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INTRODUCTION

L’accident vasculaire cérébral (AVC) se définit, selon l’Organisation mondiale de la santé, comme 
« un déficit neurologique soudain d’origine vasculaire persistant plus de 24h ou entraînant la mort dans 
les 24h». L’AVC constitue la première cause de handicap acquis de l’adulte dans les pays industrialisés. 
L’incidence annuelle est d’environ 130 000 nouveaux cas par an en France (prévalence estimée à 400 
000 patients) (Fery-Lemonnier, 2009). Le nombre de personnes hospitalisées pour AVC a augmenté 
de 16,5% entre 2002 et 2010 en lien avec l’augmentation et le vieillissement de la population. Le coût 
socio-économique de cette pathologie est très élevé avec une dépense annuelle d’environ 8,3 milliards 
d’euros, notamment liée à l’importance des séquelles neurologiques. En France, 225000 personnes 
sont classées de façon permanente en affection longue durée « accident vasculaire cérébral invalidant » 
(Fery-Lemonnier, 2009). 

Suite à un AVC, les patients présentent des troubles cognitifs et une hémiplégie ou une hémiparésie 
avec des déficits sensori-moteurs à l’origine notamment de limitations pour les déplacements et les 
activités de la vie quotidienne. Bien que la majorité des patients retrouve une capacité de marche (50 
à 80%) (Andrews et al., 1981), (Skilbeck et al., 1983), (Partridge et al., 1987), la principale limitation 
rapportée par les patients à la suite d’un AVC est la perte d’indépendance à la marche (Bohannon 
et al., 1988), (Mumma, 1986) (Pound et al., 1998). La rééducation de la marche fait donc figure de 
priorité pour les patients présentant des séquelles d’AVC (Bohannon et al., 1988), (Mumma, 1986). Une 
évaluation précise des déplacements a pour objectif d’orienter et d’optimiser la rééducation de cette 
fonction.
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Chapitre 1: ContexteIntroduction

La marche implique de multiples facteurs neurophysiologiques et biomécaniques. Le déséquilibre 
nécessaire au mouvement doit être maîtrisé au cours de la marche pour assurer la stabilité de celle-
ci. Lorsque la stabilité au cours de la marche est perturbée, un risque de chute, et de possibles 
complications, peut survenir, ce qui peut être le cas à la suite d’un AVC.

En milieu clinique, l’évaluation de la marche passe par des tests fonctionnels et peut être 
complétée par une analyse quantifiée de la marche (AQM) en laboratoire. L’AQM a rapidement constitué 
une aide au diagnostic permettant une prise en charge ciblée des patients hémiparétiques (Yavuzer et 
al., 2008), (McGinley et al., 2009). Ceci étant, les déplacements locomoteurs de la vie quotidienne ne 
peuvent se résumer pour le patient à une marche stabilisée en ligne droite sans objectif fonctionnel 
et sans contraintes environnementales. Ces dernières années des études analysant la réalisation de 
tâches fonctionnelles de la vie quotidienne (assis-debout, lever et marcher vers un but) par des patients 
hémiparétiques se sont multipliées. L’objectif de ce travail est de compléter ces études et de proposer 
au patient une évaluation quantifiée par analyse tridimensionnelle de la marche de déplacements 
fréquemment effectués dans la vie quotidienne. 

Le Timed up and go (TUG) est un test couramment utilisé en routine clinique évaluant une partie 
de ces activités fonctionnelles quotidiennes telles que se lever d’une chaise, marcher vers une cible, 
effectuer un demi-tour et retourner s’asseoir. Par conséquent, l’objectif de ce travail est de quantifier  
et d’analyser les déplacements locomoteurs des patients hémiparétiques lors de la réalisation de ce 
test. Les déplacements locomoteurs au cours du TUG comprennent 3 phases que sont les phases de 
marche aller et retour et la phase de demi-tour. Une telle évaluation basée sur l’étude des paramètres 
spécifiques tels que la cinématique, la stabilité dynamique et les trajectoires locomotrices utilisées par 
les patients au cours des phases de déplacement du TUG pourrait permettre de mieux comprendre les 
déficits et les facteurs de risque de chute des patients hémiparétiques. Ces connaissances pourraient 
ainsi améliorer et mieux guider leur  prise en charge thérapeutique afin que cette dernière soit plus 
spécifique et mieux adaptée aux besoins des patients. 

La première partie de ce document présente le contexte théorique dans lequel s’inscrit ce travail, à 
savoir les déficiences sensori-motrices et limitations de capacités faisant suite à un AVC, la cinématique 
de marche, la navigation dans l’espace et une approche de la stabilité au cours de la marche chez les 
sujets sains et les patients hémiparétiques. 

La seconde partie décrit la méthodologie générale mise en œuvre. 

La troisième partie présente les déplacements locomoteurs de sujets hémiparétiques et de sujets 
sains, quantifiés par analyse quantifiée du mouvement, lors de la réalisation du TUG. Cette troisième 
partie s’articule autour de 4 études. Les deux premières études analysent les paramètres spatio-
temporels des phases de marche aller et retour et de demi-tour du TUG et mettent en évidence les 
paramètres les plus explicatifs de chacune de ces trois phases locomotrices pour les deux populations. 
L’étude 3 et l’étude 4 comparent respectivement les paramètres de stabilité et la trajectoire locomotrice, 
lors de ces mêmes trois phases du TUG chez les patients hémiparétiques et les sujets sains. 

Enfin, la quatrième partie propose une discussion des résultats de nos études et des perspectives 
qui en découlent.
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I  L’Accident Vasculaire Cérébral et ses répercussions

I . 1  L’Accident Vasculaire Cérébral

L’accident vasculaire cérébral (AVC) est, dans 80% des cas, provoqué par une ischémie (ou 
infarctus cérébral), causée par une occlusion résultant d’un thrombus, d’un embole ou d’une 
hypoperfusion systémique. L’ischémie prive les cellules nerveuses d’oxygène et de glucose entraînant 
une nécrose cellulaire (irréversible) et une pénombre ischémique périphérique. 

Dans 20% des cas, une hémorragie, méningée ou cérébrale, peut être à l’origine de l’AVC 
(Caplan, 1997). Les AVC hémorragiques sont caractérisés par la rupture d’un vaisseau causée le plus 
souvent par une hypertension artérielle, un anévrisme, une malformation vasculaire ou des troubles de 
l’hémostase (Hauw JJ, Duyckaerts C, 1993). L’hématome induit une compression des structures.

Les facteurs de risque diffèrent selon le type d’AVC ; on retrouve le plus souvent l’athérosclérose, 
le diabète, l’hypertension, les troubles cardiaques et le tabagisme (Caplan, 1997). La fréquence des 
AVC augmente avec l’âge et le vieillissement du système artériel cérébral.

La symptomatologie de l’AVC va dépendre de l’étendue des lésions et de la topographie, selon 
que le territoire touché soit vascularisé par l’artère cérébrale antérieure, moyenne, postérieure ou 
le système vertébro-basilaire. De fait, l’AVC va être à l’origine d’altérations motrices, sensorielles et 
cognitives, qui peuvent différer en fonction de la topographie lésionnelle.

CHAPITRE 1 : CONTEXTE
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I . 2  Les troubles moteurs

L’AVC est très fréquemment à l’origine d’une atteinte de la voie cortico-spinale (support de la 
commande motrice volontaire, figure 1) engendrant un syndrome pyramidal. Celui-ci se caractérise 
par une atteinte de la motricité volontaire avec paralysie (ou parésie lorsqu’elle est incomplète) et perte 
de la sélectivité de la commande (syncinésie), une hypertonie spastique et une anomalie des réflexes 
ostéo-tendineux et cutanés (Arboix A, 2012). L’hémiplégie (ou hémiparésie lorsqu’elle est incomplète) 
conséquente est controlatérale à la lésion cérébrale.

Figure 1 : La voie pyramidale d’après (Braillon, 1996).

1. Cellules pyramidales de l’aire 4 (premier neurone).
2. Faisceau pyramidal dans le pédoncule cérébral. 
3. Décussation bulbaire du faisceau pyramidal croisé.
4. Faisceau pyramidal direct.
5. Cornes antérieures de la moelle (deuxième neurone)
6. Faisceau pyramidal croisé

I . 2 .1  Paralysie ou parésie

•	 Définition 

Les déficits de la commande motrice volontaire faisant suite à l’AVC peuvent être complets 
(paralysie) ou incomplets (parésie) et siègent controlatéralement à la lésion hémisphérique. La paralysie 
ou parésie se définit comme l’incapacité ou la difficulté à recruter volontairement les unités motrices des 
muscles squelettiques pour générer un mouvement. 



22

Chapitre 1: Contexte

•	 Mécanismes physiopathologiques 

Cette difficulté s’explique par l’interruption de l’exécution de la commande motrice, par lésion de 
la voie cortico-spinale. Le déficit moteur est alors proportionnel à la lésion de la voie (Ward et al., 2006). 
La topographie des paralysies et parésies dépend du siège des lésions cérébrales, mais prédomine en 
général en distal. Adams (1990) met ainsi en évidence une atteinte moins sévère des muscles proximaux 
(hanche et genou) parétiques par rapport aux muscles distaux (cheville et orteils) chez les patients 
atteints d’un syndrome pyramidal (Adams et al., 1990). Il existe également une distribution asymétrique 
de la faiblesse musculaire de part et d’autre d’une articulation avec un déficit plus marqué des muscles 
fléchisseurs du membre inférieur (Gracies, 2005). La réduction du trafic dans la voie cortico-spinale peut 
induire également une dégénérescence secondaire de cette voie (Orita et al., 1994), (Møller et al., 2007). 

I . 2 .2  Syncinésie

•	 Définition 

Une syncinésie est un mouvement involontaire survenant au cours d’un mouvement volontaire, 
en lien avec une perte de la sélectivité de la commande, observable chez les patients ayant eu un AVC. 

•	 Mécanismes physiopathologiques 

Les syncinésies se manifestent par des co-contractions musculaires mettant en jeu d’autres 
muscles que ceux volontairement recrutés. Trois types de syncinésies sont décrits à la suite d’un AVC : 
les syncinésies de coordination, les syncinésies d’imitation et les syncinésies globales. 

Les syncinésies de coordination mettent en jeu des groupes musculaires synergiques. Une 
syncinésie de coordination fréquemment rencontrée au membre inférieur est la coordination de la 
dorsiflexion de cheville avec la flexion de hanche du membre parétique notamment observée lors de la 
phase oscillante de la marche (Roche et al., 2015). 

Les syncinésies d’imitation impliquent le membre controlatéral (mouvement de l’autre membre 
inférieur pour imiter le mouvement du membre inférieur sollicité, ou incriminant les membres supérieurs) 
ou le membre homolatéral (mouvement du membre supérieur pour imiter le mouvement du membre 
inférieur sollicité ou inversement). 

Les syncinésies globales mettent en jeu plusieurs groupes musculaires de tout un membre selon 
des schémas globaux en flexion ou en extension. 

Les origines des syncinésies sont assez peu connues et étudiées. Il semblerait que les syncinésies 
d’imitation observées du côté non-parétique soient en lien avec une activation du cortex sensori-moteur 
non lésé (Nelles et al., 1998). Les syncinésies de coordination incriminant des muscles synergiques 
semblent liées aux interconnexions segmentaires au niveau médullaire avec une facilitation des fibres 
afférentes hétéronymes projetant sur les noyaux moteurs des muscles synergiques (Roche et al., 2015).
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I . 2 .3  Spasticité

•	 Définition 

En phase aigüe d’un AVC sévère, une flaccidité initiale associée à une abolition des réflexes est 
observée (Dietz and Sinkjaer, 2007). Dans la majorité des cas, une hypertonie spastique succède à la 
phase de flaccidité. 

La spasticité a été initialement définie par Lance (1980) comme «  une augmentation vitesse 
dépendante du réflexe tonique d’étirement et une augmentation des réflexes ostéo-tendineux, résultants 
d’une hyperexcitabilité du réflexe d’étirement, une composante du syndrome pyramidal » (Lance J., 
1980). Au membre inférieur, la spasticité siège essentiellement sur les extenseurs.

•	 Mécanismes physiopathologiques 

Les mécanismes explicatifs de la spasticité évoqués sont une augmentation de l’excitabilité 
du motoneurone alpha, une diminution de l’activité des interneurones inhibiteurs au niveau spinal 
(interneurones de l’inhibition présynaptique Ia, de l’inhibition récurrente, de l’inhibition réciproque Ia) et 
une modification du contrôle supra-spinal. De plus, il existe une diminution du seuil de l’activation des 
récepteurs sensibles à l’étirement musculaire (réponse réflexe pour une stimulation moins importante) 
en lien avec une augmentation de la sensibilité des récepteurs à l’étirement musculaire (fuseau 
neuromusculaire) elle-même liée à une modification du contrôle qu’exerce le motoneurone gamma sur 
le fuseau neuromusculaire (Pandyan et al., 2005), (Brown, 1994). 

I . 3  Les troubles sensoriels

I . 3 .1  Les troubles sensitifs

•	 Définition 

Les déficits de la sensibilité faisant suite à un AVC touchent 50% des patients (Carey, 1995), 
peuvent être complets (anesthésie) ou incomplets (hypoesthésie) et siègent du côté de l’hémiplégie. 
La sensibilité superficielle (regroupant le tact, la douleur et le chaud/froid) et la sensibilité profonde 
(regroupant la position des membres et le sens du mouvement) peuvent être perturbées. De plus, les 
patients peuvent présenter des troubles de la sensibilité subjective avec des allodynies (stimulation non 
douloureuse ressentie comme douloureuse), des hyperpathies (douleur persistante à un stimulus répété 
non douloureux), des paresthésies (sensation désagréable, non douloureuse). 

•	 Mécanismes physiopathologiques 

Les troubles sensitifs à la suite d’un AVC peuvent tout d’abord s’expliquer par l’atteinte du 
cortex sensitif et des voies sensitives correspondantes (voies spino-thalamiques pour le tact grossier, 
la douleur et la température, voie lemniscale pour le tact fin et la sensibilité profonde consciente). 
De plus, la non-utilisation induite par la paralysie engendre, de manière directe, une non-utilisation 
des afférences sensitives et potentiellement une altération des voies ascendantes (Gracies, 2005). 
Parallèlement, de manière indirecte, l’altération des feedbacks afférents risque, à son tour, d’être une 
source de perturbation du mouvement par difficulté de calibration de la commande (Macefield et al., 
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1993). Il a ainsi été montré que l’atteinte de la proprioception engendre des difficultés de coordination 
intersegmentaire (Sainburg et al., 1993).

	
I . 3 .2  Les troubles visuels

Après un AVC, 8 à 20% des patients présentent un déficit du champ visuel, lié à l’atteinte 
du cortex visuel ou des voies optiques (Barker and Mullooly, 1997), (Singh Gilhotra et al., 2002). 
L’hémianopsie latérale homonyme (HLH) est une amputation d’un hémichamp visuel (généralement 
du côté de la paralysie) empêchant la détection de stimuli du côté atteint. Les mouvements oculaires 
ont été décrits pour compenser ce déficit (Jones and Shinton, 2006). Cependant, 60% des patients 
présentant une HLH n’adoptent pas un comportement compensatoire d’exploration visuelle (Zihl, 
1995). Une désorganisation de l’exploration spatiale affecte l’intégration des informations visuelles de 
l’environnement. 

I . 4  Les troubles cognitifs 

Des troubles des fonctions supérieures (ou fonctions cognitives) peuvent faire suite à un AVC et 
notamment influencer la fonction locomotrice.

I . 4 .1  L’héminégligence

L’héminégligence se définit comme une absence de réaction et d’orientation aux stimuli présentés 
controlatéralement à la lésion cérébrale, en l’absence de troubles moteurs ou sensoriels. Ce trouble 
touche particulièrement les personnes avec un AVC dans le territoire de l’artère cérébrale moyenne 
droite qui négligent l’espace gauche (Bowen et al., 1999). La négligence peut être corporelle concernant 
le côté hémiplégique, visuo-spatiale concernant l’hémiespace et/ou motrice correspondant à une 
sous-utilisation de l’hémicorps atteint alors que les possibilités sont présentes. Les patients négligents 
présentent un défaut d’exploration spatiale du côté atteint en spontané et/ou sur demande. 

I . 4 .2  Les troubles attentionnels

Les troubles attentionnels touchent 24 à 51% des patients en phase chronique d’un AVC (Hyndman 
et al., 2008). Les troubles attentionnels peuvent concerner l’attention sélective (fixer une tâche malgré 
des distractions), l’attention soutenue (maintenir la concentration sur la durée) et/ou l’attention divisée 
(gérer plusieurs tâches en même temps). 

I . 4 .3  Les troubles des fonctions exécutives et du comportement

Des troubles des fonctions exécutives et du comportement peuvent être observés à la suite 
d’un AVC, lorsque celui-ci touche essentiellement les zones frontales ou les voies correspondantes. 
Les fonctions exécutives regroupent l’anticipation, la planification, l’initiation, l’organisation, l’inhibition, 
la résolution de problèmes et la correction d’erreurs. Elles sont mises en jeu pour les tâches orientées 
vers un but et pour les situations nouvelles (Chung et al., 2013). Des troubles du comportement tels que 
l’apathie, la réduction d’initiative, de la flexibilité ou la désinhibition peuvent également être présents. 
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I . 5  Association des symptômes induits par un AVC et répercussions fonctionnelles

I . 5 .1  Association des symptômes

De l’importance des lésions post AVC, vont dépendre les déficits qui s’ensuivent avec, 
généralement une association entre ces déficits. A la suite d’un AVC, il existe en effet une relation entre 
les déficits moteurs et les déficits sensitifs (Kusoffsky et al., 1982). De même, la spasticité est associée 
à la sévérité des parésies et à l’hypoesthésie, avec davantage de spasticité en cas de parésie sévère 
et en présence de troubles sensitifs superficiels (Sommerfeld et al., 2004), (Urban et al., 2010). Les 
patients présentant des syncinésies du côté non-parétique ont des troubles moteurs  significativement 
plus importants (Nelles et al., 1998) que les patients n’en présentant pas, suggérant une participation 
plus importante du cortex non affecté lors de troubles moteurs importants. A l’inverse, une meilleure 
récupération motrice est retrouvée chez les patients présentant des syncinésies côté parétique 
comparativement à ceux n’en présentant pas (Hwang et al., 2005), (Nelles et al., 1998). Par ailleurs, il 
existe une relation entre la sévérité de l’AVC et l’indépendance fonctionnelle des patients à l’issue de la 
phase de rééducation (évaluée par l’Index de Barthel relatant l’indépendance dans les activités de vie 
quotidiennes et les déplacements) (Jorgensen et al., 1995). 

I . 5 .2  Répercussions fonctionnelles

Chaque symptôme décrit précédemment a des répercussions sur les capacités fonctionnelles. 
Ainsi, la parésie influence toutes les activités fonctionnelles de manière générale (R. Bohannon, 2007).  
Elle a, par exemple, été associée à l’indépendance dans les activités de vie quotidienne (évaluée par 
l’index de Barthel) et la mobilité (évaluée par le Rivermead Mobility Index) (Tyson et al., 2007). Aussi, la 
force des extenseurs de genoux a été montrée comme déterminante pour le passage assis debout (R. 
W. Bohannon, 2007) et la montée et descente des escaliers chez les patients hémiparétiques (Flansbjer 
et al., 2006).

La spasticité est reconnue comme perturbatrice de la mobilité active (Bobath B., 1990). Cependant, 
bien que les patients non spastiques aient une meilleure motricité que les patients spastiques (Urban et 
al., 2010), la corrélation entre le tonus musculaire et les scores fonctionnels est faible (Sommerfeld et 
al., 2004). Ainsi les incapacités sévères peuvent aussi bien toucher les patients non spastiques que les 
patients spastiques (Sommerfeld et al., 2004).

Le mouvement nécessitant une disponibilité des informations sensitives pour une action effective 
dans l’espace, les déficits sensitifs impactent négativement les mouvements et l’exploration de 
l’environnement. A ce titre, les patients n’ayant pas de déficiences sensitives (superficielles et profondes) 
présentent une meilleure indépendance dans les activités de vie quotidienne (évaluées par l’Index de 
Barthel) et une meilleure mobilité (évaluée avec le Rivermead mobility index) que les patients avec déficits 
(Kusoffsky et al., 1982), (Sommerfeld and von Arbin, 2004), (Stern et al., 1971). Aussi, après lésion 
focale du cortex moteur de singes, Nudo et al (2000) mettent en évidence de moindres performances 
motrices de saisie et un besoin de contrôle visuel, en lien avec des déficits sensitifs, démontrant ainsi 
que les afférences sensitives sont indispensables à la bonne exécution de mouvements (Nudo et al., 
2000). Les troubles visuo-spatiaux ont également été corrélés à l’indépendance des patients dans les 
activités de vie quotidienne à l’issue de la prise en charge rééducative à la suite d’un AVC (Kaplan and 
Hier, 1982). 
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Au final, Patel et al (2000) montrent que le cumul des déficiences motrices, sensitives et 
visuelles induit davantage de dépendance fonctionnelle, évaluée avec l’Index de Barthel ou la Mesure 
d’Indépendance Fonctionnelle chez les patients hémiparétiques (Patel et al., 2000).

Les troubles cognitifs perturbent également l’indépendance dans les activités quotidiennes, la 
mobilité et l’équilibre des patients hémiparétiques (Fong et al., 2001), (Stephens et al., 2005), (Påhlman 
et al., 2011). Plusieurs études montrent une influence négative des troubles des fonctions exécutives 
sur l’indépendance dans les activités de vie quotidienne et la mobilité (évaluées par le Functional 
Independence Measure) (Fong et al., 2001) et sur la stabilité des patients à la suite d’un AVC (Påhlman et 
al., 2011). Stephens et al (2005) soulignent davantage de difficultés dans les activités de vie quotidienne 
pour les patients présentant des troubles attentionnels (Stephens et al., 2005).

I . 6  Les conséquences musculo-squelettiques

Une diminution de la mobilité passive est une complication fréquente suite à l’AVC (60% des 
patients à un an de leur AVC) (Sackley et al., 2008). Les troubles moteurs (parésie, spasticité), l’immobilité 
et les modifications tissulaires consécutives sont à l’origine des hypoextensibilités musculo-tendineuses 
et enraidissements articulaires chez les patients hémiparétiques. L’absence de mobilité est le premier 
facteur incriminé. Ainsi, l’immobilisation d’un membre dans une position raccourcie induit une diminution 
du nombre de sarcomères (Williams and Goldspink, 1984), (Ryan et al., 2002) et une atrophie (perte de 
masse musculaire par diminution du diamètre des fibres et du volume de section du muscle) (Ryan et al., 
2002). L’immobilisation est également à l’origine d’une diminution de l’extensibilité de la jonction myo-
tendineuse (Kannus et al., 1992) conduisant à des hypoextensibilités chez les patients hémiparétiques 
(Kwah et al., 2012), (Gracies, 2005), (Barnes., 2008) et limitant la mobilité autour d’une articulation 
(Gracies, 2005), (Barnes., 2008). De plus, l’immobilisation augmente les réponses des fuseaux, ce qui 
majore le réflexe myotatique et contribue à augmenter la sensibilité à l’étirement du muscle hyperactif 
(Gracies, 2005). Par ailleurs, l’immobilisation engendre une réduction des aires motrices et sensitives 
corticales correspondantes aux segments de membres immobilisés ainsi qu’une réduction du faisceau 
cortico-spinal, reflet des modifications des faisceaux afférents et efférents (Langer et al., 2012). 

Un lien entre hypoextensibilités et spasticité est fréquemment suggéré. Cependant, il semblerait 
que la limitation à l’étirement musculaire soit plus liée à la composante résistance passive de l’hypertonie 
qu’au réflexe d’étirement en tant que tel (O’Dwyer et al., 1996), (Barnes., 2008). La résistance passive 
est effectivement augmentée du côté spastique due à des modifications structurelles du complexe 
muscle-tendon-articulation (Sinkjaer and Magnussen, 1994), (O’Dwyer et al., 1996), (Singer et al., 
2003), (Dietz and Sinkjaer, 2007). 

A distance de l’AVC, la contribution musculaire semble laisser place aux phénomènes 
d’enraidissements articulaires (structures capsulo-ligamentaires) (Gracies, 2005). Ceux-ci s’expliquent 
par une prolifération de tissu conjonctif dans l’espace articulaire et son adhésion au cartilage, des 
adhérences de la membrane synoviale et un rétrécissement de la capsule (Akeson et al., 1987), (Trudel 
and Uhthoff, 2000). Une désorganisation de l’alignement ligamentaire et une diminution de l’extensibilité 
ligamentaire sont également mises en cause (Akeson et al., 1987), (Trudel and Uhthoff, 2000). Une 
atrophie et des ulcérations du cartilage sont également mentionnées dans ces phénomènes (Akeson et 
al., 1987), (Trudel and Uhthoff, 2000).
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Ces changements tissulaires et articulaires peuvent restreindre l’expression motrice des muscles 
antagonistes aux muscles spastiques, s’ajoutant ainsi aux restrictions imposées par la parésie (Pandyan 
et al., 2005), (Barnes., 2008), (Hufschmidt and Mauritz, 1985), (Gray et al., 2012).

A terme, ces limitations d’extensibilité et raideurs articulaires peuvent aboutir à des déformations, 
avec par exemple un équin irréductible de la cheville observé chez certains patients hémiparétiques 
(Thilmann et al., 1991), (Sinkjaer and Magnussen, 1994).

Tableau 1 : Récapitulatif de la symptomatologie à la suite d’un AVC.

Parésie Lésion voie cortico-spinale,
Dégénérescence secondaire

Syncinésie
Co-contractions, mécanismes peu connus (interconnexions segmentaires médullaires 
pour les syncinésies de coordination, activation cortex non-lésé pour syncinésie 
d'imitation suggérées)

Spasticité

Augmentation de l’excitabilité du motoneurone alpha, 
Diminution de l’activité des interneurones inhibiteurs au niveau spinal (interneurones de 
l’inhibition présynaptique Ia, de l’inhibition récurrente, de l’inhibition réciproque Ia)
Modification du contrôle supra-spinal
Modification de l’excitabilité des fuseaux neuro-musculaires

Troubles sensitifs Atteinte cortex sensitif et voies correspondantes
Non-utilisation des afférences sensitives et des voies ascendantes

Troubles visuels (HLH) Atteinte cortex visuel et voies correspondantes

Troubles cognitifs 

Héminégligence Essentiellement lors d’une atteinte dans le territoire de l’artère cérébrale moyenne droite

Troubles attentionnels 

Troubles dysexécutifs Essentiellement lors d’une atteinte des zones frontales ou des voies correspondantes

Conséquences 
musculo-squelettiques

Hypoextensibilités myo-tendineuses
Immobilisation induite par la non-utilisation
Réduction des aires motrices et sensitives corticales correspondantes 
Enraidissements articulaires (structures capsulo-ligamentaires)
Déformations possibles (équin par exemple)

Type de trouble Physiopathologie

La symptomatologie de l’AVC engendre un certain nombre de complications et conséquences 
fonctionnelles comme la difficulté pour les patients de réaliser les passages assis debout, les transferts 
fauteuil, le maintien de la position debout. Néanmoins, ces notions ne seront pas développées, ce travail 
ciblant essentiellement la fonction de navigation dans l’espace, elle-même basée sur les fonctions de 
marche et de l’équilibre au cours de la marche.
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II  La marche
Afin de comprendre les anomalies de marche des patients hémiparétiques, il est nécessaire de 

présenter au préalable la marche du sujet non pathologique. La marche se définit comme un mode de 
locomotion bipède avec une activité alternée des membres inférieurs et un maintien de l’équilibre au 
cours du mouvement (Plas et al., 1983). En ce sens, la marche nécessite de la stabilité pour fournir un 
support antigravitaire, de la mobilité des segments et un contrôle moteur pour les transferts du poids 
du corps d’un membre vers l’autre. D’un autre point de vue, la marche peut être présentée comme 
le déplacement d’un individu d’un point à un autre. Lorsque cela implique la finalité du déplacement 
et la prise en compte de l’environnement, le terme de navigation est alors proposé pour l’étude de la 
marche dans des situations de vie quotidienne comme la marche orientée vers un but, les trajectoires 
non rectilignes, le contournement d’obstacles, les demi-tours (Berthoz and Viaud-Delmon, 1999), (Vallis 
and McFadyen, 2003), (Gérin-Lajoie et al., 2005).

II . 1  Généralités sur la marche humaine

II . 1 .1  Le cycle de marche

La marche est décrite comme une fonction cyclique. Un cycle est déterminé par l’ensemble des 
événements survenant entre deux événements successifs identiques, l’attaque du pas au sol définissant 
communément le début et la fin d’un cycle. Les différentes phases constituant le cycle de marche sont 
exprimées en pourcentage de celui-ci, normalisé par rapport à la durée du cycle sur 100%. Deux 
principales phases composent le cycle de marche : la phase d’appui et la phase oscillante (lorsque le 
pied n’est pas en contact avec le sol). La phase d’appui comprend elle-même une première phase de 
double appui (le double appui initial), une phase de simple appui et une seconde phase de double appui 
(le double appui final). La distribution des phases lors de la marche normale est de 60% pour la phase 
d’appui avec 10% pour chaque phase de double appui et 40% pour la phase de simple appui et, 40% 
pour la phase oscillante (figure 2) (Perry, 1992).

Figure 2 : Le cycle de marche d’après (Perry, 1992)

Plus précisément, la marche se divise en 8 phases selon Perry (1992) (Perry, 1992) à savoir :
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- Phase 1 : Contact initial (0-2% du cycle de marche) : contact du pied avec le sol ;

- Phase 2 : Mise en charge (0-10% du cycle de marche) : phase de double appui initial, les objectifs 
sont l’amortissement, la stabilisation et la préservation de la progression ;

- Phase 3 : Milieu d’appui (10-30% du cycle de marche) : première moitié de la phase de simple 
appui allant du décollement du sol du pied controlatéral jusqu’à ce que le centre de gravité atteigne 
la verticale au-dessus du pied, les objectifs sont la progression et la stabilité du membre et du tronc ;

- Phase 4 : Appui terminal (30-50% du cycle de marche) : seconde moitié de la phase de simple 
appui se terminant lorsque le membre controlatéral touche le sol, l’objectif est la progression du corps 
au-delà du membre portant ;

- Phase 5 : Pré-phase oscillante (50-60% du cycle de marche) : phase de double appui final au 
cours de laquelle s’effectue le transfert de poids d’un membre inférieur à l’autre. La phase se termine 
par le décollement des orteils. Les objectifs sont la propulsion vers l’avant et le positionnement du 
membre pour la phase oscillante ;

- Phase 6 : Début de phase oscillante (60-73% du cycle de marche) : cette phase débute lorsque 
le pied quitte le sol et se termine lorsque le pied est aligné avec le pied controlatéral. Les objectifs sont 
la clairance du pied par rapport au sol et l’avancement du membre ;

- Phase 7 : Milieu de phase oscillante (73-87% du cycle de marche) : cette phase se termine 
lorsque le membre oscillant est en avant et le tibia est vertical, les objectifs sont la clairance du pied par 
rapport au sol et l’avancement du membre ;

- Phase 8 : Fin de phase oscillante (87-100% du cycle de marche) : cette phase se termine lorsque 
le pied entre en contact avec le sol. L’avancement du membre est complet lorsque le segment jambe se 
situe en avant du segment cuisse. Les objectifs sont l’avancement complet du membre et la préparation 
à l’appui.

II . 1 .2  Les paramètres cinématiques de marche 

La cinématique correspond à la description du mouvement et plus précisément au déplacement 
des segments (et non aux forces internes et externes qui expriment la cause du mouvement). La 
cinématique comprend les paramètres spatio-temporels et la cinématique articulaire.

Les paramètres spatio-temporels comprennent :

- La vitesse de marche est définie comme le temps nécessaire pour couvrir une distance donnée. 
C’est la variable la plus utilisée pour représenter la performance de marche (Olney et al., 1994). La valeur 
moyenne pour les sujets sains est comprise entre 1.3 et 1.46 m/s selon l’âge et le genre (Bohannon, 
1997). La vitesse de marche est le produit de la longueur de pas avec la cadence.

- La cadence de marche est définie comme le nombre de pas par minute. La valeur moyenne 
pour les sujets sains est de 117 pas/min pour les femmes et 111 pas/min pour les hommes (Perry, 
1992).

- La longueur de pas est définie comme la distance, dans le plan de l’avancement,  entre les deux 
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pieds posés au sol. La valeur moyenne pour les sujets sains est comprise entre 0.6 et 0.8m (Viel, 2000).

- La longueur de l’enjambée est définie comme la distance, dans le plan de l’avancement, entre 
deux poses successives du même pied. La valeur moyenne pour les sujets sains est de 1.41m (Perry, 
1992).

- La largeur de pas est définie comme la distance, dans le plan frontal de l’avancement, entre les 
deux pieds posés au sol. La valeur moyenne pour les sujets sains est comprise entre 8 et 12cm (Viel, 
2000).

- Le pourcentage de phase d’appui est défini comme le pourcentage de phase correspondant à 
la période de toute la phase d’appui. La valeur moyenne pour les sujets sains est de 60% (Perry, 1992).

- Le pourcentage de phase oscillante est défini comme le pourcentage de phase correspondant à 
la période entre le décollement des orteils et la pose du pied au sol. La valeur moyenne pour les sujets 
sains est de 40% (Perry, 1992).

- Le pourcentage de phase de simple appui est défini comme le pourcentage de phase 
correspondant à la période de la phase de simple appui du membre correspondant. La valeur moyenne 
pour les sujets sains est de 40% (Perry, 1992).

Les paramètres de la cinématique articulaire les plus fréquemment analysés sont les amplitudes 
articulaires dans le plan sagittal, à savoir les pics de flexion et d’extension des hanches, genoux et 
chevilles (de chaque membre inférieur). La figure 3 présente les valeurs normatives de la cinématique 
articulaire au cours du cycle de marche de sujets sains.

Figure 3 : Cinématique articulaire dans le plan sagittal de sujets sains au cours d’un cycle de marche : (a) 

hanche, (b) genou et (c) cheville. Les courbes présentent les moyennes et ±1 écart-type de la moyenne (Winter, 
1987). 
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Le minimum foot clearance (MFC) est le résultat du raccourcissement du membre inférieur. Ce 
paramètre se définit comme la distance verticale minimale entre le point le plus bas du pied oscillant et 
la surface au sol pendant la phase oscillante du cycle de marche (figure 4) (Winter, 1991). 

Figure 4 : Minimum Foot Clearance (MFC) lors de la marche. Déplacement vertical du marqueur orteil au cours 
d’un cycle de marche montrant que le MFC a lieu au milieu de la phase oscillante (Begg et al., 2005). 

II . 2  La marche chez les patients hémiparétiques

A la suite d’un AVC, les patients présentent leurs difficultés de marche comme une préoccupation 
primaire (Bohannon et al., 1988). De plus, les profils d’activités reportés dans la littérature pour des 
patients hémiparétiques sont restreints et très variables : entre 1.4 et 7.4 pas par jour (English et al., 2014) 
pour des patients plutôt sédentaires à 2800 pas par jour pour d’autres plus actifs, comparativement 
aux sujets sains sédentaires de même âge (5000 à 6000 pas par jour) (Michael et al., 2005). Ce faible 
niveau d’activité est lié aux déficiences faisant suite à l’AVC (parésie, hypertonie, troubles orthopédiques, 
troubles sensoriels..) perturbant le schéma de marche, la vitesse et les capacités d’équilibre des patients 
(Michael et al., 2005). Il existe bien un cercle vicieux liant les déficiences à la diminution de performance 
et aux limitations d’activités. 

II . 2 .1  Les paramètres cinématiques de marche des patients hémiparétiques

Bien que 65% à 85% des patients sont capables de marcher seul à la suite d’un AVC (Wade 
et al., 1987), (Jørgensen et al., 1995), des anomalies de la marche persistent. La marche de patients 
hémiparétiques est ainsi caractérisée par une modification des paramètres spatio-temporels et une 
diminution de la cinématique articulaire. On note en effet une diminution de la cadence du pas, de la 
longueur du pas et de la vitesse de marche (Brandstater et al., 1983), (Bohannon, 1987), (Pinzur et al., 
1987), (Olney et al., 1994), (von Schroeder et al., 1995), une augmentation de la largeur de pas (Chen 
et al., 2005) et du temps de double appui, une diminution de la durée de la phase oscillante du côté 
atteint et une augmentation de la durée du cycle de marche (Bohannon, 1987), (Pinzur et al., 1987), 
(von Schroeder et al., 1995), (Viel, 2000), (Goldie et al., 2001). 
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Il existe également des déviations de la cinématique articulaire :

- Lors de la phase oscillante, il existe ainsi une diminution du pic de flexion de hanche (Olney and 
Richards, 1996), (De Quervain et al., 1996), (Chen et al., 2005) et de flexion de genou (Lehmann et al., 
1987), (De Quervain et al., 1996), (Olney and Richards, 1996), (Kerrigan et al., 1991), (Chen et al., 2005) 
et un déficit de dorsiflexion de cheville (Lehmann et al., 1987), (De Quervain et al., 1996), (Olney and 
Richards, 1996), (Chen et al., 2005). Le MFC apparait pourtant augmenté du côté parétique par rapport 
à la norme (Little et al., 2014), probablement pour permettre une marche sécurisée. Une élévation 
du bassin et une circumduction du membre inférieur sont observées pour atteindre une clearance 
suffisante (Kerrigan et al., 2000), (Cruz and Dhaher, 2009). Dans le plan frontal, une abduction de 
hanche (Lehmann et al., 1987), (Olney and Richards, 1996) ou un varus de pied (Perry, 1992) peuvent 
également être observés.

- Lors de la phase d’appui, on note un déficit d’extension de hanche en fin de phase d’appui (De 
Quervain et al., 1996), (Chen et al., 2005), au niveau du genou, un possible recurvatum (Perry, 1992), 
(Olney and Richards, 1996) ou une flexion excessive (Olney and Richards, 1996) et, au niveau de la 
cheville, un déficit de flexion dorsale (Olney and Richards, 1996) puis un déficit de flexion plantaire en 
pré-phase oscillante (Viel, 2000). 

II . 2 .2  Conséquences des symptômes de l’AVC sur la marche

Les déficits de la commande motrice faisant suite à un AVC sont reconnus comme gênants 
pour la marche. Ainsi, la force des extenseurs de genou côté parétique conditionne l’indépendance 
à la marche (Bohannon and Andrews, 1995), (Gerrits et al., 2009). De même de nombreuses études 
montrent que la force des extenseurs et fléchisseurs de hanche, des extenseurs et fléchisseurs de 
genou et des fléchisseurs dorsaux et plantaires de cheville du côté parétique est corrélée à la vitesse 
et/ou à la cadence de marche des patients hémiparétiques (Bohannon, 1986), (Bohannon and Walsh, 
1992), (Bohannon and Andrews, 1995), (Davies et al., 1996), (Nadeau et al., 1999b), (Nadeau et al., 
1999a), (Kim and Eng, 2003), (Hsu et al., 2003), (Lin, 2005). Hsu et al (2003) montrent que, chez les 
patients hémiparétiques ayant subi un AVC,  la force des fléchisseurs de hanche est le paramètre 
qui détermine le plus la vitesse spontanée de marche et que la force des extenseurs de genou est 
le paramètre le plus impliqué dans la vitesse rapide de marche (Hsu et al., 2003). Les troubles de la 
motricité volontaire peuvent donc s’avérer gênants pour la marche. A l’inverse, les syncinésies peuvent 
être utiles, comme les syncinésies de coordination en flexion du membre inférieur pour faciliter le MFC 
du pied et ainsi probablement limiter le risque d’accrochage du pied au sol et donc le risque de chute 
(Roche et al., 2015).

Concernant la spasticité, elle peut, dans quelques cas, s’avérer aidante pour compenser une 
parésie importante comme l’hypertonie des extenseurs de genou contribuant à la phase d’appui de 
la marche (Berger et al., 1984). Néanmoins, il est fréquemment suggéré qu’elle perturbe la marche, 
mais de nombreuses études montrent qu’elle n’est que peu liée aux performances de marche que 
sont la vitesse, la cadence et l’indépendance (Nakamura et al., 1985), (Bohannon and Andrews, 1995), 
(Nadeau et al., 1999a), (Hsu et al., 2003), (Lin et al., 2006). 

Au final, de récentes études suggèrent que la force est l’élément déterminant pour la vitesse de 
marche des patients hémiparétiques (Dietz and Sinkjaer, 2007), alors que la spasticité des fléchisseurs 
plantaires est déterminante pour l’asymétrie temporale (phase de simple appui) (Hsu et al., 2003) et 



33

Chapitre 1: Contexte

spatiale de la marche (longueur de pas) (Hsu et al., 2003), (Lin et al., 2006). Par ailleurs, la combinaison 
de l’hyperexcitabilité réflexe avec la parésie semble associée à la diminution de vitesse de marche 
(Singer et al., 2003).

Les déficits de sensibilité faisant suite à un AVC sont également évoqués comme gênants pour 
la marche, avec notamment une moindre indépendance à la marche (Keenan et al., 1984). Certains 
auteurs, en revanche, ne trouvent pas de relation entre les déficits de sensibilité et les performances 
de marche des patients que sont la vitesse et la cadence (Brandstater et al., 1983), (Dettmann et al., 
1987). Nadeau et al (1999) montrent que la sensibilité n’est effectivement pas déterminante pour la 
vitesse confortable de marche mais l’est pour la vitesse rapide (Nadeau et al., 1999a). Hsu et al (2003) 
trouvent une corrélation entre les déficits sensitifs (superficiels et profonds) et la vitesse de marche 
bien que la contribution des déficits sensitifs soit moindre que les déficits moteurs. Lin et al (2006) ont 
spécifiquement étudié les paramètres spatio-temporels de la marche et montrent que la proprioception 
de cheville est corrélée à la vitesse de marche, la cadence, la longueur et la largeur de pas et l’asymétrie 
temporelle et fait partie des déterminants de la vitesse et de l’asymétrie temporelle de marche (Lin et 
al., 2006). Les patients présentant un déficit proprioceptif marchent plus lentement avec de petits pas. 
Une compensation visuelle lors de la marche (en regardant le sol et les pieds) peut alors expliquer les 
résultats de marche plus lente en cas de déficiences sensitives (Hsu et al., 2003).

Les troubles visuels et d’exploration faisant suite à un AVC vont également gêner le patient lors de 
ses déplacements. Ainsi, les patients présentant une HLH à la suite d’un AVC ont une probabilité plus 
faible de marcher sans assistance par rapport aux patients sans HLH (Reding and Potes, 1988). Il a 
aussi été montré que les patients présentant des erreurs au test de bissection de droite ont une moins 
bonne indépendance dans les activités de vie quotidiennes (index de Barthel) et une vitesse de marche 
plus lente que les patients réalisant le test sans erreur (Friedman, 1990). 

Les troubles des fonctions cognitives des patients ayant subi un AVC ont également un impact 
sur leur marche. Les patients présentant une négligence unilatérale spatiale ont par exemple une vitesse 
de marche moins élevée que les patients sans négligence (Friedman, 1990). Les troubles des fonctions 
exécutives ont également un impact négatif sur la vitesse de marche et le risque de chute des patients 
ayant subi un AVC (Yogev-Seligmann et al., 2008), (Rapport et al., 1993), (Liu-Ambrose et al., 2007). Par 
ailleurs, l’augmentation de la complexité d’une tâche locomotrice va induire davantage de sollicitations 
cognitives et donc une dégradation de la marche en cas de déficits des fonctions supérieures (Yogev-
Seligmann et al., 2008).

Le besoin de concentration lors d’activités de marche et la distractibilité sont rapportés par les 
patients ayant subi un AVC lorsqu’ils décrivent le contexte de leurs chutes (Stapleton et al., 2001), 
(Hyndman et al., 2002). Plusieurs auteurs se sont de ce fait intéressés à l’influence de l’ajout d’une 
seconde tâche au cours d’une tâche de marche chez des patients hémiparétiques ayant subi un AVC 
(Bowen et al., 2001), (Yang et al., 2007), (Baetens et al., 2013). Le paradigme de double tâche permet 
ainsi (i) d’évaluer le coût en ressources attentionnelles pour contrôler une tâche locomotrice et (ii) de 
quantifier l’automaticité d’une tâche (Canning et al., 2006). Il a notamment été montré que la condition 
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double tâche (réaliser deux tâches simultanément) affecte les paramètres spatio-temporels de marche 
des patients hémiparétiques qui réduisent leur vitesse de marche, leur cadence et longueur de pas 
et augmentent leur phase de double appui lorsqu’ils doivent effectuer une tâche cognitive au cours 
de la marche (Plummer-D’Amato et al., 2008), (Plummer-D’Amato et al., 2010), (Bowen et al., 2001), 
(Baetens et al., 2013).

Les conséquences musculo-squelettiques peuvent perturber la marche. Par exemple, au cours 
de la marche, l’équin diminue l’absorption en flexion de genou lors de la mise en charge, peut induire 
une hyperextension de genou à la phase d’appui et un accrochage du pied lors de la phase oscillante 
(Perry, 1992). Ces perturbations s’accompagnent d’une diminution de la vitesse de marche de patients 
hémiparétiques (Perry, 1992), (Roy et al., 2013). Néanmoins, il semblerait que ces gênes soient à 
relativiser selon l’importance des déficiences orthopédiques. Ainsi, Lamontagne et al (2000) et Lin et al 
(2006) ne trouvent pas de corrélation entre la raideur passive de cheville en flexion dorsale et la vitesse 
de marche, la cadence, la longueur de pas des patients hémiparétiques (Lamontagne et al., 2000), (Lin 
et al., 2006). Cependant les déficits de flexion dorsale présentés par les patients inclus dans ces études 
ne semblaient pas suffisamment importants pour limiter la vitesse de marche. A l’inverse, certains 
auteurs suggèrent que la raideur pourrait parfois s’avérer bénéfique comme par exemple l’augmentation 
du moment en flexion plantaire de cheville lors de la phase d’appui de la marche permis par la raideur 
passive de cheville, pour compenser le manque de moment actif (Lamontagne et al., 2000).

II . 2 .3  Les principaux schémas de marche décrits chez les patients hémiparétiques

La littérature décrit des schémas de marche fréquemment rencontrés chez le patient hémiparétique :

- Le fauchage est un mouvement de circumduction pour compenser un déficit de raccourcissement 
du membre inférieur parétique, par manque de flexion de hanche et/ou de genou et de flexion dorsale 
de cheville lors de phase oscillante (Kerrigan et al., 2000), (Kim and Eng, 2004), (Chen et al., 2005).

- Le stiff knee gait est caractérisé par un déficit de flexion de genou lors de phase oscillante du cycle 
de marche (Kerrigan et al., 1991). Les causes identifiées du stiff knee gait sont une hyperactivité d’un 
ou plusieurs chefs du quadriceps (fréquemment le rectus femoris), une flexion de hanche insuffisante et 
un défaut de propulsion en fin de phase d’appui (Campanini et al., 2013).

- Le recurvatum, ou hyperextension de genou, survenant lors de la phase d’appui (Olney and 
Richards, 1996), (Kim and Eng, 2004). Un déficit de force des extenseurs et des fléchisseurs de 
genou, une hyperactivité des extenseurs de genou, une hyperactivité et/ou une hypoextensibilité des 
fléchisseurs plantaires peuvent être incriminés dans ce trouble de marche (Moseley et al., 1993).

- L’équin se définit comme une position de flexion plantaire de cheville avec l’avant-pied plus 
bas que le talon (Perry, 1992). Une flexion plantaire excessive en phase oscillante majore le risque 
d’accrochage du pied au sol et un équin en phase d’appui peut induire un appui sur la pointe du pied ou 
un recul du tibia (induisant un possible recurvatum) (Perry, 1992). Les causes évoquées pour une flexion 
plantaire excessive sont un déficit de force des fléchisseurs dorsaux de cheville, une hyperactivité des 
fléchisseurs plantaires et les changements histologiques associés à l’immobilisation pouvant induire 
une hypoextensibilité du triceps sural (Perry, 1992).
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III  La stabilité lors de la marche

III . 1  La stabilité lors de la marche chez les sujets sains

Afin de comprendre les difficultés de stabilisation des patients hémiparétiques au cours de la 
marche, il est également nécessaire de présenter au préalable la stabilisation du sujet non pathologique 
au cours de cette dernière. La stabilité à la marche peut être considérée comme la capacité à maintenir 
une locomotion fonctionnelle et contrôler le centre de masse malgré les perturbations (Winter, 1990), 
(Viel, 2000), (England and Granata, 2007). Ce contrôle est permis par des réactions antigravitaires et 
des réactions d’équilibration (réactions compensatrices des forces extérieures ou des mouvements 
intentionnels) (Winter et al., 1998). Cette régulation passe par des changements géométriques opérés 
grâce aux informations issues des afférences cutanées plantaires, proprioceptives (des membres, du 
tronc et du cou pour permettre une organisation par rapport à la verticale), vestibulaires et visuelles. 
Une intégration multisensorielle autorise la comparaison à une référence. On parle de contrôle rétroactif 
(en feedback) permis par un système auto-adaptatif sensori-moteur. Par ailleurs, le contrôle de 
l’équilibre n’est pas simplement dû à une chaîne de réponses à des stimuli. Il implique également la 
comparaison de l’état des récepteurs avec une prédiction (Berthoz, 1997). Cette prédiction consiste en 
une anticipation des conséquences de l’action, basée sur nos apprentissages passés. On parle alors 
de contrôle proactif (feedforward) permis par des ajustements posturaux anticipés. L’équilibre est ainsi 
assuré par un contrôle rétroactif et proactif.

La marche doit ainsi répondre aux exigences de propulser le corps vers l’avant et de, conjointement, 
maintenir l’équilibre pour une adaptation aux contraintes environnementales (Outrequin G., 1991). La 
stabilité est considérée comme une stratégie globale impliquant une réponse du corps entier à la suite 
de perturbations de l’équilibre (Berthoz, 1997), (Marigold and Misiaszek, 2009). Le centre de masse 
(COM), point équivalent à la masse totale corporelle pondéré des masses de chaque segment corporel, 
est donc envisagé comme la variable contrôlée par le système pour maintenir l’équilibre (Winter and 
Eng, 1995). La stabilité pendant la marche n’est pas simple, nécessitant, pour contrôler le COM à une 
distance importante du sol, un équilibre basé sur de petites surfaces en contact avec le sol (en phase 
de simple appui et en double appui, avec uniquement le talon du pied avant et l’avant-pied du pied 
arrière) et une pose du membre oscillant en position optimale (Winter and Eng, 1995). La translation du 
COM au cours de la marche décrit une sinusoïde dans le plan vertical et horizontal. Ces déplacements 
du COM dans l’espace au cours de la marche sont gérés de façon à être aussi limités que possible 
pour obtenir une marche optimale et dépenser un minimum d’énergie (Saunders et al., 1953), (Perry, 
1992). Les changements brusques de direction sont ainsi évités dans cet esprit d’économie d’énergie 
(Perry, 1992).

Divers paramètres ont été suggérés pour quantifier la stabilité au cours de la marche. Les mesures 
directes des déplacements du COM sont considérées comme des indicateurs de défaut de stabilité 
en cas de déplacements en dehors des amplitudes et vitesses habituelles. L’amplitude et la vitesse du 
COM dans le plan médio-latéral sont augmentées chez les sujets âgés lors d’une marche avec une 
base étroite (Kelly et al., 2008) et chez les sujets âgés présentant des troubles de l’équilibre lors d’une 
tâche instable d’enjambement d’obstacles (Chou et al., 2003), (Hahn and Chou, 2003) traduisant une 
moindre stabilité. Cette même tâche d’enjambement n’entraine pas de telles modifications chez les 
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sujets jeunes, traduisant une maîtrise de l’équilibre (Chou et al., 2001). Les déplacements du COM dans 
le plan vertical peuvent également traduire une difficulté à maintenir l’équilibre,  avec une augmentation 
de l’amplitude retrouvée chez les patients vestibulaires lorsqu’on leur impose un rythme de marche, par 
rapport à une marche à vitesse spontanée (Tucker et al., 1998).

Une condition fréquemment évoquée pour un maintien de l’équilibre est la projection du COM 
dans le polygone de sustentation. En condition de marche, la base de sustentation étant mobile, Pai et 
Patton recommandent de prendre en considération la vitesse pour identifier les risques de chute (Pai 
and Patton, 1997). Ainsi, le COM peut être dans le polygone mais l’équilibre impossible si la vitesse est 
dirigée vers l’extérieur et inversement,  le COM peut être hors du  polygone mais l’équilibre possible si 
la vitesse est dirigée vers l’intérieur. L’homme est alors considéré comme un pendule inversé, modélisé 
par une masse m se balançant au-dessus d’un segment de longueur l. En se basant sur la théorie de 
Pai et Patton, Hof et al (2005) proposent une mesure de la marge de stabilité, définie comme la distance 
entre le COM extrapolé et les limites de la base de sustentation, le COM extrapolé prenant en compte la 
position et la vitesse du COM (Hof et al., 2005). La limite de cette approche est la considération du corps 
humain comme un pendule inversé. Ceci nous orientera vers le choix des paramètres de déplacements 
du COM (amplitude et vitesse) et des paramètres spatio-temporels de la marche, la littérature étant 
riche dans l’exploration de ces paramètres, pour traduire la stabilité lors de la marche. Le suivi des 
mouvements du COM au cours de la marche est d’ailleurs recommandé en pratique clinique pour les 
patients présentant des troubles de marche (Detrembleur et al., 2000).

Les paramètres spatio-temporels de la marche constituent une mesure indirecte de la stabilité. 
La largeur de pas est souvent nommée comme un critère de stabilité au cours de la marche, avec 
une augmentation de celle-ci pour compenser des difficultés de stabilité (Gabell and Nayak, 1984), 
(Heitmann et al., 1989), (Hak et al., 2012), (Hak et al., 2013a). En plus d’augmenter leur largeur de pas 
lorsqu’une perturbation de l’équilibre est ajoutée à une tâche de  marche, les sujets sains et personnes 
âgées diminuent leur vitesse et leur longueur de pas pour assurer une bonne stabilité (Hak et al., 2012), 
(Hak et al., 2013a), (Aboutorabi et al., 2015), (Woollacott and Tang, 1997). Lors d’une marche sur des 
obstacles déstabilisants, une augmentation de la longueur de pas peut également être retrouvée, pour 
minimiser les contacts au sol, source de perturbation de la stabilité (Menz et al., 2003). Le pourcentage 
de double appui lors de la marche, paramètre temporel, est également suggéré comme lié à l’équilibre 
avec une augmentation des phases de double appui pour assurer la stabilité en péril (Cromwell and 
Newton, 2004), (Tucker et al., 1998). 

La stabilité pendant la marche comprend également la phase oscillante avec une hauteur du pas 
suffisante pour éviter tout accrochage du pied et trébuchement (Weerdesteyn et al., 2008). Le Minimum 
Foot clearance (MFC) est ainsi identifié comme un moyen de contrôler la stabilité au cours de la marche 
(Hamacher et al., 2011) et apparait comme le premier mode de correction pour assurer la stabilité lors 
de nos déplacements. Il permet d’évaluer le risque de trébuchement et donc de chute (Barrett et al., 
2010).

Les perturbations de la stabilité ne viennent pas nécessairement de l’extérieur, mais peuvent être 
induites par un mouvement complexe exécuté par le sujet lui-même. Un déplacement nécessitant le 
contournement d’obstacles implique une orientation particulière de la marche en plus des besoins de 
progression et de maintien de l’équilibre. Faire face aux contraintes agissant comme perturbateurs de 
la stabilité apparait alors plus complexe lors de déplacements variés impliquant des changements de 
direction, des contournements d’obstacles par exemple que lors d’une marche lancée en ligne droite. 



37

Chapitre 1: Contexte

La diminution de stabilité (traduite par des chancellements) lors d’un demi-tour en marchant est ainsi une 
caractéristique des mouvements des personnes âgées chuteuses et des personnes âgées présentant 
des difficultés à effectuer cette tâche (Thigpen et al., 2000). Les personnes chuteuses adaptent donc 
leur mouvement en augmentant le nombre de pas et le temps pour réaliser un demi-tour afin d’améliorer 
leur stabilité (Wall et al., 2000), (Dite and Temple, 2002). 

III . 2  La stabilité lors de la marche chez les patients hémiparétiques

III . 2 .1  Les symptômes influençant la stabilité lors de la marche

Suite à un AVC, la stabilité à la marche peut être compromise du fait des troubles de motricité, de 
sensibilité et des limitations orthopédiques (Kligyte et al., 2003), (Niam et al., 1999), (Tyson et al., 2006), 
(Weerdesteyn et al., 2008). Les déficits de la commande motrice faisant suite à un AVC influencent 
en effet les capacités d’équilibre dynamique des patients hémiparétiques. Tyson et al (2006) trouvent 
effectivement une relation positive entre les déficits de force (Motricity index) et les troubles de l’équilibre 
mis en évidence par le Brunel Balance Assessment (comprenant des épreuves statiques et dynamiques 
dont la marche) (Tyson et al., 2006). De même, Kligyte et al (2003) trouvent des corrélations entre 
la parésie des fléchisseurs de hanche, extenseurs de genou et fléchisseurs plantaires de cheville et 
le Timed Up and Go, test impliquant, entre autres, un besoin de stabilité lors de tâches de marche 
orientée vers une cible et de demi-tours (Kligyte et al., 2003). Au-delà du déficit de force, le retard de 
contraction musculaire observé à la suite d’un AVC semble avoir un impact sur le contrôle de l’équilibre 
et le risque de chute (Di Fabio and Badke, 1988), (Marigold et al., 2004a), (Marigold and Eng, 2006). 
Ceci a été illustré par Marigold et al (2004, 2006), mettant en évidence un allongement du délai de 
réaction posturale côté parétique plus important chez les patients chuteurs que chez les non-chuteurs 
(Marigold et al., 2004a), (Marigold and Eng, 2006). Par ailleurs, il a été suggéré que la combinaison d’une 
spasticité des fléchisseurs plantaires de cheville et d’un déficit de flexion dorsale en phase oscillante de 
marche diminue la surface d’appui au sol et réduit la stabilité au cours de la marche (Weerdesteyn et 
al., 2008).

Les déficiences sensitives peuvent également influencer les capacités d’équilibre des patients 
hémiparétiques. Ainsi, les déficits de sensibilité du membre inférieur parétique (superficielle et 
proprioceptive) apparaissent associés aux déficits d’équilibre dynamiques des patients hémiparétiques 
(Niam et al., 1999), (Tyson et al., 2013). Niam et al (1999) montrent par exemple, que les déficits de 
proprioception de cheville sont associés à des scores inférieurs à la Berg Balance Scale (comprenant 
des épreuves dynamiques dont l’exécution d’un demi-tour, la pose alternative des pieds sur une 
marche)  (Niam et al., 1999). Tyson et al (2013) présentent également l’existence d’une corrélation entre 
les déficits sensitifs superficiel et profond et les troubles de l’équilibre évalués par la Berg Balance Scale 
et le Brunel Balance Assessment (Tyson et al., 2013). Pour autant, l’influence des déficits sensitifs sur 
les capacités d’équilibration semble moindre que celle de la faiblesse musculaire (Tyson et al., 2013). 
Toutefois, lorsque des déficits sensitifs s’ajoutent aux troubles moteurs, le risque de chute des patients 
hémiparétiques devient alors trois fois plus élevé (Yates et al., 2002). 

Les déficiences visuelles peuvent aussi être associées à un défaut de stabilité lors de la marche des 
patients hémiparétiques. Ainsi les troubles visuels et d’exploration peuvent induire des trébuchements 
voire potentiellement des chutes chez les patients hémiparétiques (Pollock et al., 2011), (Jongbloed, 
1986), sachant que la perte d’un champ visuel est associée au risque de chute (Ramrattan et al., 2001).
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Les troubles des fonctions cognitives influencent également la stabilité des patients hémiparétiques 
lors de la marche. Il existe, en effet, des corrélations entre les déficits attentionnels et, les capacités 
d’équilibre, les activités de mobilité en intérieur et extérieur et le nombre de chutes des patients 
hémiparétiques à la suite d’un AVC (Hyndman and Ashburn, 2003), (Hyndman et al., 2008).

Les troubles musculo-squelettiques peuvent aussi affecter la stabilité au cours de la marche des 
patients hémiparétiques. Un équin peut, par exemple, induire un appui sur la pointe du pied avec donc 
une moindre surface portante et un risque d’accrochage du pied au sol en phase oscillante (Perry, 
1992).

III . 2 .2  Interactions entre stabilité et marche

Il existe une association entre les capacités d’équilibre et les performances de marche. Il a ainsi 
été montré que les capacités d’équilibre (évaluées par le Brunel Balance Assessment) font figure de 
premier prédicteur des capacités de mobilité (évaluées par le Rivermead mobility index, regroupant 
essentiellement des tâches de marche) des patients hémiparétiques devant les déficits de force et de 
sensibilité (Tyson et al., 2007). De plus, les capacités d’équilibre (évaluées par la BBS comprenant des 
épreuves dynamiques dont l’exécution d’un demi-tour, la pose alternative des pieds sur une marche) 
sont corrélées à la vitesse de marche et à la distance de marche lors du test des 6 minutes (parcourir le 
plus de distance possible en 6 minutes) (Eng et al., 2002), (Patterson et al., 2007) et au nombre de pas 
réalisés dans la journée par les patients hémiparétiques (Michael et al., 2005).

Les études précitées renseignent des capacités d’équilibre des patients au moyen d’échelles 
et de tests comprenant des tâches dynamiques comme la Berg Balance Scale (BBS) ou le test 
Timed Up and Go (TUG). Le score à une échelle comme la BBS qualifie la réalisation de la tâche or, 
bien que des liens aient été montrés entre un score à la BBS et les capacités de marche, ce type 
d’évaluation n’implique pas directement l’évaluation de la stabilité au cours de la marche. D’autre part, 
le TUG implique bien une évaluation de déplacements locomoteurs nécessitant de la stabilité, mais la 
performance chronométrique obtenue à l’issue du test peut paraitre insuffisante quant aux informations 
relatives à la stabilité du patient au cours de la marche. 

Certains auteurs se sont par conséquent intéressés à l’évaluation spécifique de la stabilité au 
cours de la marche chez les patients hémiparétiques. Nous avons vu précédemment qu’un défaut de 
stabilité à la marche pouvait se traduire par une augmentation des déplacements du COM avec une 
majoration de l’amplitude et de la vitesse de déplacement de celui-ci. Chez les patients hémiparétiques, 
il existe, au cours de la marche, une  augmentation des déplacements du bassin dans le plan frontal, 
en lien avec un défaut de stabilité latérale, par rapport aux sujets sains (Tyson, 1999), (De Bujanda et 
al., 2004). Clark et al (2012) ont évalué l’amplitude du déplacement médio-latéral du COM lors d’une 
tâche de marche dans différentes conditions (avec ou sans assistance) chez des patients cérébro-
lésés et des sujets sains (Clark et al., 2012). Comparativement aux sujets sains, les sujets cérébro-
lésés avaient un déplacement plus important, qui pouvait être réduit lorsqu’un support était autorisé 
(suspension du poids du corps, appui des membres supérieurs, assistance du thérapeute). Ces 
mêmes résultats mettant en évidence davantage de déplacements médio-latéraux du COM chez les 
patients cérébro-lésés par rapport aux sujets sains ont également été retrouvés par d’autres auteurs 
(Catena et al., 2007). Dans le plan vertical, des déplacements du COM de plus grande amplitude que 
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ceux observés lors de la marche de sujets sains ont également été mis en évidence chez les patients 
hémiparétiques (Detrembleur et al., 2003). Certains auteurs se sont intéressés aux déplacements du 
COM dans un contexte de situations complexes comme la marche en double tâche ou l’exécution de 
tâches locomotrices complexes. Ainsi, une amplitude et une vitesse plus importantes du COM dans 
le plan médio-latéral ont été retrouvées chez les patients cérébro-lésés lors de  l’adjonction d’une 
tâche cognitive à une tâche locomotrice par rapport à une simple tâche de marche (Catena et al., 
2007), (Howell et al., 2014). Un autre type de situation complexe, l’enjambement d’obstacles, engendre 
également une augmentation des déplacements latéraux du COM chez les patients traumatisés crâniens 
par rapport à des sujets sains (Chou et al., 2004). Ces déplacements étaient d’autant plus importants 
que la tâche était instable (obstacles plus hauts). 

Les paramètres spatio-temporels de la marche font également figure d’indicateurs de la stabilité 
des patients hémiparétiques au cours de la marche. Patterson et al (2008) suggèrent qu’une asymétrie 
temporelle aux dépens du membre parétique peut s’expliquer par la difficulté à maintenir l’équilibre 
en phase de simple appui du côté parétique (Patterson et al., 2008). De la même manière, une 
augmentation de la largeur de pas des patients hémiparétiques au cours de la marche est proposée 
comme un mécanisme de compensations de défaut d’équilibre (Chen et al., 2005), (De Bujanda et 
al., 2004), (Kao et al., 2014). Ces modifications biomécaniques peuvent aussi bien apparaitre comme 
des conséquences de l’AVC sans causalité induite par un manque de stabilité. Hak et al (2013) se 
sont récemment intéressés à l’impact d’une perturbation de l’équilibre pendant une tâche de marche 
sur tapis roulant chez des patients hémiparétiques comparativement à des sujets sains (Hak et al., 
2013b). En condition de perturbation, la réduction de la longueur de pas était plus importante pour les 
patients que les sujets sains, l’augmentation de la largeur de pas n’était pas différente entre les deux 
populations et seuls les patients diminuaient leur vitesse de marche. Ces résultats mettent en évidence 
une possible adaptation des paramètres spatio-temporels de marche chez les patients hémiparétiques, 
en réponse à des perturbations de l’équilibre, afin d’assurer une stabilité optimale. Le sens de ces 
adaptations peut alors être le même que chez les sujets sains, dans des amplitudes différentes. Par 
ailleurs, plusieurs études montrent que l’adjonction d’une tâche cognitive lors de la marche requiert 
une adaptation des paramètres spatio-temporels de la part des patients hémiparétiques pour maintenir 
une stabilité efficace (Bowen et al., 2001), (Hyndman et al., 2006), (Plummer-D’Amato et al., 2008). On 
retrouve notamment une diminution de la vitesse (Bowen et al., 2001), (Plummer-D’Amato et al., 2008), 
de la longueur de pas (Plummer-D’Amato et al., 2008) et une augmentation de la durée des phases de 
double appui (Bowen et al., 2001).

Le minimum foot clearance (MFC), identifié comme « contrôleur » de la stabilité au cours de la 
marche, est incriminé par les patients hémiparétiques qui reportent un accrochage du pied parétique par 
manque d’élévation comme une cause de chute (Hyndman et al., 2002). Or une étude récente montre 
que le MFC chez les sujets hémiparétiques est augmenté du côté parétique (3.2cm) par rapport aux 
sujets sains (1.5cm) (Little et al., 2014). Par ailleurs, lors d’une tâche de marche impliquant la montée 
sur un obstacle, étaient observés un MFC significativement plus important et une longueur de pas post-
obstacle réduite chez les patients hémiparétiques comparativement aux sujets sains (Said et al., 2001). 
Cela suggère que le MFC est le reflet d’adaptations des patients hémiparétiques ayant conscience du 
risque d’accroche de leur pied au sol. L’augmentation du MFC vise alors à éviter la chute. En cas de 
tâche complexe nécessitant par exemple de monter sur un obstacle au cours de la marche, la même 
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stratégie de minimisation du risque de trébuchement est mise en place (Said et al., 2001). Malgré cette 
stratégie de précaution, les patients présentaient une variabilité importante du MFC pouvant conduire 
à un contact involontaire du pied avec l’obstacle à franchir. Ce potentiel risque était également mis en 
évidence par le raccourcissement du pas post-obstacle pouvant traduire une difficulté pour effectuer 
cette tâche complexe. Dans un autre contexte, lors d’une perturbation de l’équilibre au cours de la 
marche par un blocage soudain du membre inférieur non-parétique (ou dominant pour les sujets sains), 
les patients hémiparétiques utilisent une stratégie d’abaissement du membre bloqué, minimisant ainsi la 
durée d’appui sur le membre parétique au sol, alors que les sujets sains élèvent leur membre (Krasovsky 
et al., 2013). Il semblerait donc que les stratégies de stabilisation des patients hémiparétiques diffèrent 
en fonction de la tâche incriminée et de la possible anticipation de la perturbation.

Au final, les patients hémiparétiques adaptent les mouvements de leur COM, leurs paramètres 
spatio-temporels et leur MFC pour assurer le maintien de la stabilité pendant la marche et pendant 
des tâches plus complexes comme l’enjambement d’obstacles ou la marche en condition de double 
tâche. Par conséquent, il semblerait légitime de retrouver ces adaptations lors des tâches de navigation 
rencontrées au quotidien comme le contournement d’obstacles.

III . 3  La chute chez les patients hémiparétiques

Bien que les patients hémiparétiques mettent en place des adaptations afin d’obtenir une marche 
précautionneuse, la chute est une complication fréquente après un AVC, que ce soit en phase aiguë 
(Davenport et al., 1996), (Teasell et al., 2002) ou en phase dite “chronique” (au-delà des 6mois suivant 
l’AVC selon l’HAS (Haute autorité de Santé, 2012), (Wagner et al., 2009). Le taux de patients chuteurs 
est compris entre 10,5 et 47% lors de la phase de rééducation et entre 23 et 70% lorsque les patients 
vivent au domicile (Weerdesteyn et al., 2008). Ces chutes ne sont pas sans conséquence, avec un risque 
sept fois plus élevé de fracture chez les patients à la suite d’un AVC, en lien avec la déminéralisation 
osseuse, par rapport à la population générale (Kanis et al., 2001). Le plus souvent, ce sont des fractures 
de hanche sachant que la récupération de la mobilité complète qui s’ensuit est de 38% chez les patients 
hémiparétiques et de 69% dans la population générale  (Kanis et al., 2001), (Weerdesteyn et al., 2008), 
(Ramnemark et al., 1998). Par ailleurs, de nombreux patients chuteurs développent une peur de chuter 
à nouveau, menant à une sédentarité et un déconditionnement pouvant conduire à une diminution de 
leur indépendance (Weerdesteyn et al., 2008). Ces données font du dépistage du risque de chute une 
question importante chez les patients ayant subi un AVC, sachant que les prédictions par les scores 
cliniques comme la performance au TUG ont récemment été remises en cause (Persson et al., 2011), 
(Barry et al., 2014). Concernant les circonstances des chutes, celles-ci surviennent essentiellement lors 
de changements de position pour les patients en phase de rééducation et lors d’activités de marche 
variées pouvant impliquer des demi-tours, principalement en intérieur, pour les patients rentrés à leur 
domicile (Nyberg and Gustafson, 1995), (Hyndman et al., 2002), (Harris et al., 2005), (Belgen et al., 
2006), (Kerse et al., 2008), (Weerdesteyn et al., 2008). Les difficultés de contrôle de l’équilibre au cours 
de la marche sont largement incriminées pour expliquer les chutes des patients hémiparétiques (Nyberg 
and Gustafson, 1995), (Forster and Young, 1995), (Hyndman et al., 2002), (Belgen et al., 2006). Tout 
cela mène à l’intérêt d’explorer les tâches de navigation rencontrées au quotidien chez les patients 
hémiparétiques. 
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IV  Restriction de capacités dans l’environnement du patient
L’AVC est à l’origine d’un certain nombre de déficiences (sensitivo-motrices, cognitives) et de 

complications ce qui, comme nous l’avons vu, concourt à restreindre voire parfois rendre impossible 
certaines capacités telles que l’équilibre et la marche. La Classification Internationale du Fonctionnement, 
du Handicap et de la Santé (CIF), élaborée par l’Organisation Mondiale de la Santé (OMS) et entérinée 
en 2001 propose une étude des fonctions organiques et structures anatomiques, des activités et de 
la participation du patient, et des facteurs environnementaux et personnels (Organisation Mondiale 
de la Santé OMS, 2001). Prendre en compte le patient dans son environnement et sa vie quotidienne 
apparait en effet incontournable pour l’analyse des limitations de capacités de celui-ci, d’autant plus 
que deux tiers des patients retournent à leur domicile au terme de la rééducation faisant suite à l’AVC 
(Jorgensen et al., 1995), (Fery-Lemonnier, 2009). La marche s’envisage ainsi comme la navigation du 
patient dans son environnement avec des contournements d’obstacles, des demi-tours plus qu’une 
marche en ligne droite stricte sans prise en compte des éléments extérieurs, pourtant présents dans 
la vie quotidienne. De la même manière, les capacités d’équilibre s’envisagent selon leur composante 
statique mais également dynamique, lors d’une tâche de déplacement par exemple. Les données 
et études présentées précédemment relatives aux capacités de marche et d’équilibre pendant la 
marche sont essentiellement issues d’évaluations de marche en ligne droite sans cible ni contraintes 
environnementales à prendre en compte. Pourtant la prise en compte de ces éléments pourrait 
permettre d’envisager le patient dans un environnement quotidien et de contextualiser sa navigation et 
le risque de chute.

V  Navigation de l’homme dans l’environnement, trajectoires et adapta-
tions aux contraintes environnementales

V . 1  Navigation et trajectoires chez le sujet sain

La présentation de la marche ne peut se suffire à une description de sa fonction cyclique. Nos 
déplacements quotidiens s’effectuent dans un environnement dont la prise en compte est indispensable 
tant il conditionne notre marche. Que ce soit en intérieur ou en extérieur, la marche est fréquemment 
orientée vers un but. Elle comprend, par conséquent, des trajectoires courbes, des demi-tours et 
nécessite le contournement d’obstacles, anticipé ou imprévu. Glaister et al (2007) ont ainsi observé des 
changements de direction comptant pour 8 à 50% des déplacements quotidiens (Glaister et al., 2007). 
De la même manière, Patterson et al (2014) montrent que le contexte environnemental extérieur affecte 
la marche des sujets sains (Patterson et al., 2014). La marche est ainsi influencée par les caractéristiques 
de l’espace environnant et par l’objectif de marche (Saelens and Handy, 2008). 

Le terme de navigation a été proposé par Berthoz pour relater la marche du sujet en prenant 
en compte l’environnement (Berthoz and Viaud-Delmon, 1999). La navigation est définie comme le 
processus ou l’activité de déterminer avec précision sa position et planifier un itinéraire (Belmonti et al., 
2013). Le guidage de cette navigation pour obtenir un mouvement optimal passe par une intégration 
multisensorielle. Les modalités sensorielles particulièrement impliquées sont les afférences visuelles, 
proprioceptives et vestibulaires (Berthoz and Viaud-Delmon, 1999). L’intégration de ces afférences par 
le système nerveux va permettre une représentation des relations du corps et de l’environnement et, 
une comparaison avec la trajectoire planifiée, le schéma corporel et les expériences passées (Berthoz 
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and Viaud-Delmon, 1999). Pour permettre une navigation efficace et sécurisée, le sujet a ainsi besoin 
de connaitre et actualiser les relations spatiales entre lui et les obstacles environnants. Les activités 
locomotrices quotidiennes orientées vers un but, pouvant nécessiter le contournement d’obstacles, ont 
besoin d’une adaptation permanente du guidage de cette navigation, basée sur l’intégrité de la boucle 
afférences-centres intégrateurs-efférences. 

Ces dernières décennies, les études sur l’analyse de la trajectoire locomotrice lors de la navigation 
chez l’homme se sont multipliées. Courtine et Schieppati (2003) ont étudié le suivi de trajectoires rectilignes 
et curvilignes par six sujets sains en condition yeux ouverts et yeux fermés (Courtine and Schieppati, 
2003). La suppression de la vision induisait peu de déviation de la trajectoire rectiligne mais davantage 
pour la trajectoire curviligne. Par rapport à la trajectoire rectiligne, la trajectoire curviligne provoquait une 
diminution de la vitesse de progression et une adaptation de la longueur de pas avec un allongement 
de la longueur du pas côté extérieur de la courbe et une réduction de la longueur du pas interne. Les 
auteurs montraient également une relation entre la position des pieds et le changement d’orientation du 
corps lors des trajectoires curvilignes. L’orientation de la tête suggérait une anticipation de la rotation 
en direction de la courbure. Les résultats de cette étude mettent en évidence une adaptation du patron 
locomoteur lors d’un passage d’une trajectoire rectiligne à curviligne, sans changements brusques de 
déplacement ou de vitesse. Les modifications cinématiques segmentaires observées étaient étroitement 
liées au changement de la trajectoire globale du corps, suggérant que les synergies responsables de 
ces adaptations font partie de notre librairie interne (ensemble des caractéristiques physiques du corps, 
du monde extérieur et de leurs interactions, construites par apprentissage) (Wolpert and Ghahramani, 
2000). 

Hicheur et al (2007) ont également étudié les trajectoires locomotrices de six sujets sains mais 
dans un contexte de contraintes environnementales où les trajectoires étaient spontanées et non 
imposées comme dans l’étude de Courtine et Schieppati (2003). Dans l’étude de Hicheur et al, les sujets 
devaient marcher vers et passer au travers de portes dont la position et l’orientation changeaient au 
cours de l’expérimentation (Hicheur et al., 2007). Une analyse de la géométrie et de la cinématique des 
trajectoires et du cycle de marche était réalisée. Les résultats montraient des trajectoires locomotrices 
très similaires en termes de vitesse et de géométrie entre les sujets et les répétitions. Cette stéréotypie se 
caractérisait par des trajectoires d’autant plus déviées que l’amplitude du tour était grande. De même, 
l’orientation du corps était proportionnelle à la courbure des trajectoires avec une rotation précoce de 
la tête anticipatrice du tour. A l’inverse, un placement différent des pieds était retrouvé au cours des 
répétitions. Les auteurs concluent à un contrôle global de la trajectoire locomotrice dans l’espace plutôt 
qu’à un contrôle de pas successifs.

Ces deux études montrent une adaptation segmentaire et une adaptation globale de la trajectoire 
locomotrice aux contraintes environnementales chez les sujets sains. Le contrôle de la navigation 
apparaît basé plutôt sur la trajectoire globale que sur une séquence de pointages de pied. Notons 
que, pour ces deux études, la déviation de la trajectoire locomotrice a été quantifiée par une approche 
spatiale, la distance euclidienne, et que d’autres méthodes sont possibles.

D’autres auteurs se sont intéressés à la négociation d’obstacles lors de navigation. Vallis et 
McFadyen (2003) ont étudié le comportement locomoteur de six sujets sains lors du contournement 
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spontané d’un obstacle situé à 3m du point de départ de la marche (Vallis and McFadyen, 2003). Par 
rapport à une situation contrôle sans obstacle, les sujets déviaient latéralement leur centre de masse, 
diminuaient leur vitesse de marche, augmentaient leur largeur de pas avant l’atteinte de l’obstacle, sans 
modification de la longueur de pas. Ces modifications en amont du croisement de l’obstacle suggèrent 
un ajustement planifié pour assurer une déviation contrôlée de la trajectoire et un contournement 
sécurisé. 

Gérin-Lajoie et al (2005) ont analysé, chez 10 sujets sains,  l’évitement d’un sujet immobile ou 
mobile, lors d’une marche orientée vers une cible (Gérin-Lajoie et al., 2005). Deux conditions étaient 
envisagées, une condition connue, pour laquelle la position et le déplacement du sujet « obstacle » 
étaient connus et une condition inconnue pour laquelle ces informations n’étaient pas mentionnées. 
La stratégie d’évitement se décomposait en une phase anticipatoire et une phase d’évitement. Des 
adaptations locomotrices anticipatrices étaient effectivement trouvées avec, une déviation de la trajectoire 
locomotrice, un élargissement des pas et une diminution de la longueur des pas. Une diminution de 
la vitesse de marche était observée en condition inconnue (réduction plus importante lorsque le sujet 
à éviter était mobile) mais la vitesse n’était pas modifiée en condition connue. En condition connue, la 
mise en place des adaptations locomotrices anticipatrices était plus précoce, autorisant un mouvement 
plus efficace. Quelle que soit la condition, la distance d’évitement était la même (un tiers de la longueur 
de pas) et correspondait à la marge de sécurité lors de l’évitement d’un obstacle. Les résultats de cette 
étude mettent en évidence l’existence d’adaptations locomotrices anticipatrices, préplanifiées, dans 
l’environnement considéré, lors d’une tâche de navigation avec évitement sécurisé d’obstacles.

Au final, la littérature suggère que les trajectoires locomotrices sont anticipées et adaptables 
selon les contraintes environnementales de manière à procurer la navigation la plus efficace possible.

Au-delà des contraintes environnementales, le terme de contrainte peut aussi être entendu comme 
des impératifs auxquels doit répondre la tâche. Les déplacements de l’homme dans l’environnement 
répondent ainsi aux contraintes de performance et de stabilité. La régulation de la navigation va alors 
dépendre de la priorisation de telle ou telle contrainte (performance ou stabilité) en fonction de l’individu 
et du contexte environnemental.

V . 2  Navigation et trajectoires chez les patients hémiparétiques 

Les paramètres de marche des patients ayant subi un AVC peuvent être influencés par différents 
facteurs comme l’environnement dans lequel les patients se déplacent. Il a par exemple été montré que 
les patients hémiparétiques réduisent leur vitesse de marche de presque 20% lorsqu’ils évoluent dans un 
centre commercial, comparativement au couloir calme de l’hôpital (Lord et al., 2006). L’imprévisibilité du 
lieu public semblait orienter le patient vers une marche précautionneuse. Quelques études récentes se 
sont intéressées à l’analyse de tâches de navigation réalisées par des patients hémiparétiques. Lorsque 
la tâche locomotrice implique de suivre une trajectoire en cercle, les patients adaptent leur cinématique 
de marche avec une diminution de la vitesse de marche et de la cinématique articulaire des membres 
inférieurs et, une augmentation du rayon de courbure des trajectoires (Duval et al., 2011). Hollands et 
al (2010) ont proposé une analyse cinématique de la réalisation du contournement d’obstacles (demi-
tour du Timed Up and go test) par 18 patients hémiparétiques et 18 sujets sains (Hollands et al., 2010). 
Les auteurs mettaient en évidence une réorientation de la tête plus près du point de demi-tour chez 
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les sujets hémiparétiques, un nombre de pas identique et une durée plus importante chez les patients 
chuteurs, comparativement aux sujets sains.

A ce jour peu de recherches se sont focalisées sur l’étude des trajectoires locomotrices des 
patients hémiparétiques. A notre connaissance, une seule équipe a proposé deux études récentes 
explorant cette thématique, dans un contexte d’environnement virtuel constitué par des flux optiques 
translationnels. Lamontagne et al (2010) ont ainsi comparé les comportements locomoteurs de 10 
patients hémiparétiques et 11 sujets sains soumis à des flux optiques orientés dans cinq directions 
différentes (-40° et -20° vers la gauche ou le côté non-parétique, 0° et +20° et +40° vers la droite ou le 
côté parétique) et devant respecter la consigne de marcher en ligne droite (Lamontagne et al., 2010). 
Les sujets sains adoptaient un comportement stéréotypé avec une déviation de la trajectoire locomotrice 
dans la direction opposée du flux optique (déviation proportionnelle à la perturbation optique). Les 
patients hémiparétiques avaient, quant à eux, différents comportements locomoteurs. Trois groupes 
pouvaient être distingués : les patients présentant peu ou pas de déviation de leur trajectoire, les patients 
ayant une direction de trajectoire incongrue et les patients déviant leur trajectoire du côté non-parétique 
quelle que soit la direction du flux optique. Les auteurs suggéraient que l’altération de la perception ou 
de l’intégration sensori-motrice des patients pouvaient être en cause dans la déviation anormale de leur 
trajectoire locomotrice.

Aburub et Lamontagne (2013) ont comparé le comportement locomoteur de 10 sujets 
hémiparétiques et 10 sujets sains soumis à des flux optiques lors d’une tâche de navigation réalisée 
en marchant et en position assise (navigation par la souris d’un ordinateur). Cette condition assise, 
réalisée par la main non-parétique, avait pour but d’éliminer l’impact des déficiences sensori-motrices 
et difficultés de marche (Aburub and Lamontagne, 2013). La tâche de navigation impliquait 3 positions 
de la cible à atteindre et 3 orientations du flux optique (20° à gauche, 20° à droite et 0°). En réponse 
aux flux optiques, les patients hémiparétiques déviaient leur trajectoire vers la direction désirée, mais 
avec des ajustements moindres que les sujets sains. Ce résultat diffère de l’étude précédente de 
Lamontagne et al (2010) qui mettait en évidence une déviation erronée et variée de la trajectoire des 
patients hémiparétiques soumis à un flux optique (Lamontagne et al., 2010). L’ajout d’une cible dans 
la présente étude pourrait expliquer, selon les auteurs, cette différence de résultats en rapport avec un 
guidage locomoteur permis par la cible à atteindre. Ainsi la cible fournirait une information visuelle moins 
complexe que les flux optiques. Les performances des patients hémiparétiques lors de la navigation 
manuelle en position assise n’étaient pas différentes de celles des sujets sains. Ceci suggère que les 
défauts de perception visuelle chez les patients ne sont pas les principaux facteurs explicatifs des 
déviations locomotrices. D’autres déficits sensori-moteurs et une priorisation de la marche avec les 
fonctions de maintien de l’équilibre et progression dans l’espace semblent être les facteurs privilégiés.

A notre connaissance, aucune étude n’a exploré les trajectoires locomotrices des patients 
hémiparétiques en environnement réel (par contraste avec un environnement virtuel avec flux optiques) 
lors de tâches de navigation impliquant des contournements d’obstacles par exemple, tâches 
couramment rencontrées au quotidien. Seule une étude focalisant sur la négligence a évalué les 
trajectoires locomotrices de patients à la suite d’un AVC par rapport à une trajectoire rectiligne demandée 
(Huitema et al., 2006). Les résultats ont mis en évidence une déviation latérale de la trajectoire (écart 
de la trajectoire rectiligne) chez les patients négligents par rapports aux patients ne présentant pas de 
négligence.
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VI  Vers une analyse instrumentée du Timed Up and Go

VI . 1  Le test Timed Up and Go, représentatif de la navigation

Le test Timed Up and Go (TUG) évalue la capacité des patients à se lever d’une chaise, marcher 
3m, faire demi-tour et revenir s’asseoir (Podsiadlo and Richardson, 1991). Ce test fait partie des 
évaluations locomotrices validées chez le patient hémiparétique et couramment réalisées en routine 
clinique comme le test de 10m pour évaluer la vitesse de marche et le test de 6 minutes pour évaluer le 
périmètre de marche (Ng and Hui-Chan, 2005). Le TUG est rapide de passation et, est connu comme 
un bon indicateur de la fonction locomotrice (Flansbjer et al., 2005). Il présente l’avantage d’évaluer les 
déplacements dans un contexte proche du quotidien, comprenant une marche orientée vers un but 
et un demi-tour et, semble donc représentatif des tâches de navigation locomotrices. Aussi le TUG 
nécessite une coordination entre les phases le composant et des capacités de stabilisation (Ng and 
Hui-Chan, 2005). 

La performance au TUG est un score chronométrique renseignant sur la durée d’exécution de 
l’ensemble des activités le composant. Cette performance est suggérée comme indicateur permettant 
d’identifier les patients chuteurs (parmi les personnes âgées et les personnes hémiparétiques) (Shumway-
Cook et al., 2000), (Simpson et al., 2011). Cependant, le TUG peut apparaître peu informatif des facteurs 
incriminés dans l’altération de la performance, rendant l’orientation thérapeutique spécifique difficile. De 
plus, la performance au TUG peut ne pas être suffisamment sensible pour discriminer les effets de 
telle ou telle thérapeutique ou dépister certains patients à risque de chute. Nous avons par exemple 
précédemment comparé l’impact d’un entraînement à la marche sur tapis roulant à un entrainement 
de marche au sol sur la performance des patients hémiparétiques au test TUG (Bonnyaud et al., 2014). 
L’absence de différence selon le terrain d’entrainement a soulevé la question de la sensibilité de la 
performance chronométrique globale au TUG et d’un possible effet plafond chez des sujets présentant 
une récupération motrice plutôt bonne, ces limites ayant été suggérées par ailleurs (Knorr et al., 2010). 
Ainsi, dans cette étude, la performance globale pouvait masquer l’amélioration spécifique de telle phase 
du TUG selon l’entrainement réalisé. De plus, de récentes études suggèrent que la capacité du TUG 
à prédire les chutes est limitée (Andersson et al., 2006), (Persson et al., 2011), (Barry et al., 2014). 
Au final, le TUG s’avère comme représentatif des déplacements locomoteurs du quotidien pour les 
patients hémiparétiques mais le score chronométrique à l’issue du test apparaît comme peu informatif.

A l’inverse, l’analyse quantifiée du mouvement (AQM) permet une évaluation très précise de la 
marche, faisant aujourd’hui figure de gold standard pour la quantification des paramètres biomécaniques 
de marche des patients (McGinley et al., 2009). Cette analyse tridimensionnelle autorise une approche 
de la compréhension des troubles du patient hémiparétique et constitue donc une aide à la décision 
thérapeutique ; elle permet également une évaluation objective et précise de l’impact des interventions 
(Yavuzer et al., 2008). Cependant, l’analyse de la marche par AQM réalisée en routine clinique consiste 
en une évaluation de la marche lancée en ligne droite, ce qui s’avère peu représentatif des activités 
locomotrices quotidiennes. 
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VI . 2  Une instrumentation du TUG 

Au vu des données précédentes, il existerait un réel intérêt d’évaluer les tâches de navigation 
composant le TUG au moyen de l’analyse quantifiée du mouvement et proposer ainsi une instrumentation 
du TUG. L’étude biomécanique du TUG permettrait une analyse des différentes composantes 
(cinématique, stabilité) aboutissant à une performance donnée. Ceci est en accord avec de récentes 
études soulignant l’utilité d’approfondir le TUG (Wall et al. 2000), (Faria et al., 2013). En effet, Wall et 
al (2000) ont proposé le Expanded Timed Up and Go test permettant une analyse indépendante des 
phases constituant le TUG afin d’identifier celles incriminées dans la diminution de performance (Wall 
et al. 2000). Plus récemment, Faria et al (2013) ont suggéré l’utilisation d’une échelle d’évaluation  
biomécanique de chaque sous-tâche du TUG, le TUG-Assessment of Biomechanical Strategies (TUG-
ABS) (Faria et al., 2013). Développée en 15 items, cette échelle permet aux thérapeutes de coter 3 
items relatifs à la tâche assise debout, 5 relatifs à la marche, 4 relatifs au demi-tour et 3 relatifs à la 
tâche debout assise, avec 3 réponses possibles pour chaque item, lors de la réalisation du TUG par 
les patients. L’objectif d’une analyse du TUG par phase et d’une approche biomécanique de chacune 
de ses phases permettrait de mettre en évidence les difficultés rencontrées par le patient et ainsi 
d’orienter spécifiquement la prise en charge thérapeutique. Cela répondrait également aux besoins 
récemment mis en évidence comme, par exemple, la nécessité d’approfondir l’étude du demi-tour du 
TUG réalisé par des patients hémiparétiques (Hollands et al., 2010), l’importance de l’évaluation de la 
stabilité au cours de la marche (Hak et al., 2013b), (Little et al., 2014) et l’intérêt d’analyser les stratégies 
possiblement utilisées par les patients lors de tâches de navigation et de négociation d’obstacles en 
situation réelle (Vallis and McFadyen, 2003), (Hicheur et al., 2007).

Nous avons également précédemment montré qu’il existait des liens entre le score chronométrique 
du TUG et les paramètres biomécaniques de marche (obtenus au cours d’une AQM conventionnelle) 
chez les patients hémiparétiques (Bonnyaud et al., 2015). Ainsi, le pourcentage de simple appui côté 
parétique était le facteur le plus explicatif de la performance chronométrique. Ceci suggère que la 
performance globale du TUG est un indicateur du côté parétique et plus spécifiquement du contrôle 
de la stabilité du côté parétique. Bien que ces données s’avèrent intéressantes, l’existence d’un lien 
entre un score fonctionnel représentant les activités locomotrices du quotidien et des paramètres 
biomécaniques précis au cours d’une marche en ligne droite ne semblent pas aussi pertinent que 
l’analyse directe des paramètres biomécaniques au cours d’une tâche de navigation. Par conséquent, 
une approche quantitative des mouvements au cours de tâches de navigation, par instrumentation 
du TUG, pourrait permettre de mieux comprendre les mécanismes biomécaniques sous-tendant la 
performance aux différentes phases du TUG et, de fait, pourrait permettre de mieux guider la prise en 
charge thérapeutique des patients en fonction des phases du TUG les plus altérées.

Ces dernières années, les études évaluant des gestes quotidiens en laboratoire se sont multipliées, 
renseignant sur les stratégies de réalisation et ouvrant le champ de ce type d’analyse pour évaluer les 
patients. De nombreux auteurs ont ainsi mené une analyse biomécanique instrumentale des tâches 
assis debout et lever marche chez des sujets hémiparétiques et des sujets sains (Cheng et al., 1998), 
(Galli et al., 2008), (Lecours et al., 2008), (Dion et al., 2003), (Frykberg et al., 2009). Cheng et al (1998) 
ont ainsi montré que les patients hémiparétiques chuteurs exerçaient moins d’appui et présentaient plus 
d’oscillations médio-latérales par rapport aux patients non-chuteurs et aux sujets sains lors d’une tâche 
assis debout (Cheng et al., 1998). Pour cette même tâche, une flexion excessive du tronc associée à 
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une flexion dorsale de cheville majorée ont été trouvées chez les patients hémiparétiques par rapport 
aux sujets sains, mouvements supposés répondre à une stratégie de stabilisation (Galli et al., 2008). 

De récentes études ont porté sur l’analyse biomécanique du TUG dans sa globalité ou en partie 
chez des patients hémiparétiques, des patients parkinsoniens et des sujets sains (Weiss et al., 2010), 
(Zampieri et al., 2010), (Herman et al., 2014), (Salarian et al., 2010), (Hollands et al., 2010). Hollands et 
al (2010) ont ainsi étudié la phase du demi-tour du TUG chez des patients hémiparétiques (chuteurs et 
non-chuteurs) et des sujets sains (Hollands et al., 2010). Les résultats mettaient en évidence une durée 
de demi-tour plus importante chez les patients hémiparétiques chuteurs par rapport aux sujets sains 
(mais pas de différence avec les patients non-chuteurs), un nombre de pas identique entre les groupes 
et une orientation de la tête plus proche du point de rotation pour les patients hémiparétiques, lors du 
demi-tour côté non-parétique, comparativement aux sujets sains. Aucune différence cinématique de 
rotation axiale n’était retrouvée, ne permettant pas la discrimination des patients chuteurs. Ceci suggérait 
que d’autres paramètres explicatifs pouvaient être mis en jeu. D’autre part, l’instrumentation du TUG 
a récemment été réalisée au moyen de capteurs embarqués (accéléromètres, gyroscopes) chez des 
patients parkinsoniens et des sujets sains (Weiss et al., 2010), (Zampieri et al., 2010), (Salarian et al., 
2010), (King et al., 2012), (Herman et al., 2014). Cette approche a notamment permis de montrer que 
les patients parkinsoniens adoptaient une amplitude lors de la phase de lever, une vitesse de rotation 
du tronc plus faibles et une durée ainsi qu’un nombre de pas aux demi-tours plus importants que les 
sujets sains (traduisant une stratégie précautionneuse), alors que le score chronométrique ne trouvait 
pas de différence entre les deux populations (Zampieri et al., 2010), (Salarian et al., 2010), (Weiss et 
al., 2010), (King et al., 2012). Ces études suggèrent que l’analyse biomécanique du TUG complète 
l’analyse de la performance chronométrique avec une quantification des mouvements permettant une 
meilleure compréhension des mécanismes sous-tendant la performance. Cependant, à ce jour, ce 
genre d’analyse du TUG n’a jamais été proposé pour les patients hémiparétiques. 



48

SYNTHÈSE ET OBJECTIFS

A la suite d’un AVC, les patients hémiparétiques présentent des troubles de la marche dont 
l’origine est multifactorielle (déficits de la commande motrice volontaire, spasticité, syncinésies, déficits 
sensoriels, troubles cognitifs, complications orthopédiques). Ces troubles se traduisent par  une 
perturbation des paramètres spatio-temporels (avec notamment une diminution de la vitesse et de 
la longueur de pas et une augmentation de la largeur de pas et du temps de double appui) et des 
paramètres de la cinématique articulaire (avec une diminution des pics de flexion en phase oscillante 
et des pics d’extension en phase d’appui côté parétique, à l’exception d’une possible hyperextension 
de genou en phase d’appui), comparativement à des sujets sains. Ces paramètres permettent une 
meilleure compréhension de la diminution de la performance de marche des patients et donc d’orienter 
la prise en charge thérapeutique.

Par ailleurs, ces dernières décennies, plusieurs études ont mis en évidence l’intérêt d’étudier la 
stabilité au cours de la marche chez les patients hémiparétiques. Parmi les paramètres utilisés pour 
évaluer cette stabilité au cours de la marche figurent les déplacements du COM, les paramètres spatio-
temporels et le minimum foot clearance. Les déplacements du COM sont augmentés chez les patients 
hémiparétiques, signe d’un défaut de leur stabilité (Detrembleur et al., 2003), (Clark et al., 2012). La 
vitesse de marche, la largeur et la longueur de pas, le pourcentage de phase de double appui et de 
simple appui côté parétique sont également proposés comme indicateurs de stabilité des patients 
hémiparétiques (Patterson et al., 2008), (Chen et al., 2005), (Kao et al., 2014), (Hak et al., 2013b). 
Le MFC, augmenté chez les patients hémiparétiques (Little et al., 2014), est proposé comme étant 
le reflet d’adaptations pour prévenir les risques de chute par accrochage du pied au sol. De plus, les 
patients hémiparétiques diminuent leur vitesse et la cinématique articulaire des membres inférieurs 
pour répondre aux contraintes environnementales, comme la marche en cercle ou la marche en centre 
commercial (Lord et al., 2006), (Duval et al., 2011). 
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D’autre part, de récentes études suggèrent que l’évaluation des trajectoires locomotrices chez les 
patients hémiparétiques, renseigne sur leur adaptation aux contraintes environnementales. L’analyse 
des trajectoires locomotrices dans un contexte d’environnement virtuel avec flux optique a ainsi permis 
de mettre en évidence une déviation de la trajectoire des patients hémiparétiques différente de celle des 
sujets sains (Lamontagne et al., 2010), (Aburub and Lamontagne, 2013). Ces modifications peuvent 
être envisagées comme une prise en compte par le patient de la complexité de la tâche. 

Au final, les récentes propositions d’analyse de la stabilité au cours de la marche et des trajectoires 
locomotrices complètent l’évaluation plus fréquente de la cinématique de marche chez les patients 
hémiparétiques. Ces évaluations, autorisant une meilleure compréhension des déplacements des 
patients dans l’environnement, pourraient permettre d’orienter plus spécifiquement la prise en charge 
thérapeutique.

L’évaluation des capacités de marche des patients hémiparétiques en routine clinique passe par 
des tests fonctionnels aboutissant à l’obtention d’une performance globale, souvent chronométrique. A 
l’inverse, l’AQM offre la possibilité d’obtenir une quantification des paramètres de marche. La limite de 
chacune de ces approches constitue le point fort de l’autre approche. Ainsi le TUG permet d’envisager 
la marche comme une navigation du patient dans son environnement avec des tâches de marche 
orientée et de demi-tour, mais n’est, à ce jour, évalué qu’avec un score chronométrique global ne 
permettant pas la compréhension des mécanismes impliqués dans les variations de la performance. A 
l’inverse, l’évaluation de la marche par AQM offre des résultats concernant chacune des composantes 
du mouvement, mais, conventionnellement, se limite à l’étude de la marche lancée, en ligne droite 
stricte sans prise en compte des éléments environnants, pourtant présents dans la vie quotidienne. 
L’instrumentation du TUG pour une analyse biomécanique des tâches de navigation répond donc aux 
besoins soulignés par la littérature avec notamment une analyse spatio-temporelle et de la cinématique 
articulaire (Faria et al., 2013), (Zampieri et al., 2010), (Salarian et al., 2010), une analyse spécifique du 
demi-tour (Hollands et al., 2010) et une analyse des trajectoires locomotrices. Une analyse instrumentée 
du TUG permettra ainsi une étude biomécanique des troubles locomoteurs des patients hémiparétiques 
au plus proche des conditions quotidiennes et donc une meilleure compréhension des mécanismes 
impliqués dans la diminution de la performance observée chez ces patients. Ceci pourrait permettre à 
terme d’envisager une orientation optimale de la prise en charge thérapeutique des patients présentant 
des séquelles d’AVC. Au total, pour caractériser précisément les déplacements des patients, une 
quantification (1) de la cinématique, (2) de la stabilité et (3) des trajectoires locomotrices en fonction de la 
tâche locomotrice réalisée (marche orientée vers une cible, demi-tour) semble nécessaire et pertinente.

L’objectif principal de cette thèse était donc de caractériser l’organisation des patients 
hémiparétiques au cours des tâches de navigation du TUG (marche orientée vers la cible, demi-tour et 
marche orientée vers le siège) et de définir la ou les stratégies d’adaptations possiblement utilisées par 
les patients. Pour cela nous proposons une analyse biomécanique de leurs déplacements locomoteurs 
lors de 3 phases du TUG (Aller, Demi-tour, Retour) permettant une étude de la cinématique, de la 
stabilité et des trajectoires locomotrices. Ce travail repose sur 4 études évaluant et comparant ces 
différents paramètres au moyen d’un système optoélectronique chez des patients hémiparétiques et 
des sujets sains.
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La première étude avait pour objectif de déterminer quels paramètres spatio-temporels et 
cinématiques évalués au cours des phases de marche orientée et de demi-tour du TUG étaient le plus 
liés à la performance chronométrique des phases correspondantes chez des patients hémiparétiques. 
Nous avons émis l’hypothèse que le pourcentage de phase de simple appui et le pic d’extension de 
hanche du côté parétique seraient particulièrement liés à la performance des sous-tâches de marche 
orientée et de demi-tour du TUG. Ces hypothèses étaient basées sur le fait que le pourcentage de 
phase de simple appui au cours de la marche en ligne droite a été montré comme étant le principal 
facteur explicatif de la performance totale au TUG (Bonnyaud et al., 2015) et que le pic d’extension de 
hanche a été montré comme associé à la vitesse de marche (Lamontagne and Fung, 2004).

La seconde étude avait pour objectifs de (1) comparer les paramètres spatio-temporels et 
cinématiques évalués au cours des phases de marche orientée et de demi-tour du TUG entre les patients 
hémiparétiques et des sujets sains et de (2) déterminer si les paramètres explicatifs de la performance 
de chacune des phases étudiées différaient entre les patients hémiparétiques et des sujets sains. Les 
paramètres spatio-temporels et cinématiques étant diminués chez les patients hémiparétiques au cours 
de la marche en ligne droite (Kerrigan et al., 1991), (Olney and Richards, 1996), (Perry, 1992), (von 
Schroeder et al., 1995) nous avons émis l’hypothèse qu’ils seraient également diminués au cours des 
phases de navigation du TUG. Nous émettions aussi l’hypothèse que les paramètres explicatifs des 
phases du TUG différaient entre les patients hémiparétiques et des sujets sains.

La troisième étude visait à (1) analyser la stabilité au cours des phases de marche orientée et de 
demi-tour du TUG en étudiant les déplacements verticaux et médio-latéraux du COM et le MFC des 
patients hémiparétiques et de les comparer à ceux des sujets sains ; (2) évaluer les relations entre les 
paramètres du COM et le MFC et la performance chronométrique des phases correspondantes ; et 
(3) comparer les paramètres du COM et le MFC entre les patients hémiparétiques chuteurs et non-
chuteurs. Nous supposions que les déplacements verticaux et médio-latéraux du COM seraient de 
plus grande amplitude et de plus grande vitesse et que, le MFC serait plus important chez les patients 
hémiparétiques que chez les sujets sains, en se basant sur les données publiées sur la stabilité à la 
marche en ligne droite chez les patients hémiparétiques (Detrembleur et al., 2003), (Little et al., 2014). 
Nous émettions également l’hypothèse que les paramètres du COM et le MFC seraient positivement 
corrélés à la performance chronométrique des phases correspondantes du TUG et que les déplacements 
du COM seraient plus importants et le MFC serait réduit chez les patients hémiparétiques chuteurs, en 
comparaison avec les non-chuteurs. 

La quatrième étude avait pour objectifs (1) d’analyser les trajectoires locomotrices des patients 
hémiparétiques lors des  phases de marche orientée et de demi-tour du TUG et les comparer à celles 
des sujets sains  ; (2) de comparer les paramètres des trajectoires entre les patients hémiparétiques 
chuteurs et les non-chuteurs et entre les patients hémiparétiques droits et gauches; et (3) évaluer la 
corrélation entre les paramètres de trajectoire et le score à la BBS des patients hémiparétiques. Nous 
émettions l’hypothèse que les trajectoires des patients hémiparétiques seraient déviées par rapport 
à celles des sujets sains et particulièrement lors de la phase du demi-tour du TUG, phase la plus 
complexe en terme de stabilité (Lamontagne et al., 2010). Nous émettions également l’hypothèse que 
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les trajectoires seraient différentes entre les patients hémiparétiques chuteurs et les non-chuteurs et 
seraient plus déviées chez les patients hémiparétiques gauches que chez les patients hémiparétiques 
droits du fait de l’altération de la perception de la verticale à la suite d’un AVC hémisphérique droit. Nous 
supposions par ailleurs que les trajectoires les plus longues seraient associées à de faibles scores à la 
BBS, en considérant que les patients les plus instables dévieraient le plus de la trajectoire optimale pour 
assurer une bonne stabilité.
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I  Population

Vingt-neuf patients hémiparétiques et vingt-cinq sujets sains ont accepté de participer au 
protocole après explication de celui-ci et ont donné leur consentement écrit. Les patients inclus étaient 
hospitalisés ou régulièrement suivis dans le service de médecine physique et rééducation de l’hôpital 
Raymond Poincaré, Garches. Les critères d’inclusion étaient : avoir plus de 18 ans, une hémiparésie 
due à un AVC, la capacité de réaliser plusieurs TUG sans aide technique et être suffisamment stable 
médicalement pour participer au protocole. Les patients étaient exclus s’ils présentaient d’autres 
troubles neurologiques, orthopédiques ou médicaux pouvant interférer avec le test. Dans les études 
2, 3 et 4, les patients hémiparétiques ont été comparés à des sujets sains, appariés en âge. Les 
sujets sains n’avaient pas d’antécédents neurologiques ou orthopédiques pouvant interférer avec la 
locomotion. Ce protocole a reçu l’approbation du comité d’éthique institutionnel (Comité de protection 
des personnes Ile de France XI, Ref 13005. CNIL, Ref DR-2013-283) et a fait l’objet d’un dépôt sur le 
site ClinicalTrials.gov (Identifier : NCT01807273).

Les caractéristiques des patients hémiparétiques et des sujets sains figurent dans le tableau 2.

CHAPITRE 2 :  MÉTHODOLOGIE GÉNÉRALE
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Tableau 2 : Caractéristiques des patients hémiparétiques et des sujets sains.

Sujets Sexe Age Taille Poids
Côté Hémiparétique pour les patients

Côté non dominant pour les sujets sains

Patients 
hémiparétiques 18 H / 11 F 54,2 ± 12,2 1,68 ± 0,09 73,2 ± 16,2 17 gauches / 12 droits

Sujets sains 11 H / 14 F 51,6 ± 8,7 1,67 ± 0,11 65,6 ± 14,7 23 gauches / 2 droits

II  Matériel de mesure et procédure expérimentale

Afin de répondre à nos objectifs, les données biomécaniques de tâches de navigation ont été 
quantifiées au moyen d’une analyse tridimensionnelle du mouvement. Ce chapitre décrit le système et le 
modèle utilisés, la procédure expérimentale, le traitement des données, les paramètres biomécaniques 
analysés et enfin les données cliniques.

II . 1   Système optoélectronique et modèle biomécanique

Un système d’analyse du mouvement optoélectronique a été utilisé (Motion Analysis Corporation, 
Santa Rosa, CA, USA), avec une fréquence d’échantillonnage de 100Hz. Ce système se compose de 
8 caméras infrarouges (Eagle, 1.3 Mpixels) et de marqueurs passifs réfléchissants. Les caméras sont 
placées de façon à correspondre au volume dans lequel évoluaient les sujets lors de la réalisation du 
TUG. Chaque marqueur doit ainsi être perçu simultanément par au moins deux caméras afin de pouvoir 
reconstruire son positionnement dans les trois plans de l’espace (Bonnefoy et al., 2005a). Le logiciel 
Cortex (Motion Analysis Corporation, Santa Rosa, CA, USA) permet l’acquisition, la visualisation en 
temps réel des marqueurs et la première phase de traitement des données (traitement des trajectoires 
des marqueurs).

Figure 5 : Capture d’écran d’une scène de visualisation du set de marqueurs utilisé pour la modélisation du 
corps entier. Exemple d’identification et de suivi d’un des capteurs du pelvis par les caméras 1-3-5-6.
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Le modèle Helen Hayes a été utilisé (Kadaba et al., 1990). Il définit le placement de marqueurs 
identifiant les segments des participants (modèle à 12 segments). Le tableau 3 présente les marqueurs 
du modèle et les repères anatomiques de placement et l’annexe 1 présente le placement de ces 
marqueurs sur un sujet.

Tableau 3 : Marqueurs du modèle Helen Hayes et repères anatomiques de placement.

Appellation du marqueur Repères anatomiques

R. Shoulder  sommet de l’acromion droit

L. Shoulder  sommet de l’acromion gauche

R. Elbow  épicondyle latéral de l’humérus droit

L. Elbow  épicondyle latéral de l’humérus gauche

R. Wrist  milieu des styloïdes radiale et ulnaire droites, face dorsale

L. Wrist  milieu des styloïdes radiale et ulnaire gauches, face dorsale

Offset pointe de la scapula droite

R. Asis  épine iliaque antéro-supérieure droite 

L. Asis  épine iliaque antéro-supérieure gauche 

V. Sacral  partie supérieure du sacrum, jonction avec L5 

R. Thigh  segment cuisse droit 

L. Thigh  segment cuisse gauche 

R. Knee  condyle latéral du fémur droit, dans l’axe de flexion/extension de genou 

L. Knee condyle latéral du fémur gauche, dans l’axe de flexion/extension de genou

R. Knee medial  condyle médial du fémur droit, dans l’axe de flexion/extension de genou

L. Knee medial  condyle médial du fémur gauche, dans l’axe de flexion/extension de genou

R. Shank  segment jambier droit 

L. Shank  segment jambier gauche

R. Ankle  malléole latérale de la cheville droite dans l’axe de flexion/extension de cheville 

L. Ankle  malléole latérale de la cheville gauche dans l’axe de flexion/extension de cheville 

R. Ankle Medial  malléole médiale de la cheville droite dans l’axe de flexion/extension de cheville 

L. Ankle Medial  malléole médiale de la cheville gauche dans l’axe de flexion/extension de cheville

R. Heel  partie postérieure du calcaneum droit dans l’alignement du marqueur orteil 

L. Heel  partie postérieure du calcaneum gauche dans l’alignement du marqueur orteil 

R. Toe  entre le 2eme et le 3eme métatarse droit dans l’alignement du marqueur talon 

L. Toe  entre le 2eme et le 3eme métatarse gauche dans l’alignement du marqueur talon
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Des marqueurs ont été ajoutés sur les grands trochanters et les crêtes iliaques afin de faciliter 
la reconstruction des trajectoires des marqueurs du pelvis. Au total, trente marqueurs ont été utilisés. 
Les mesures sont influencées par le système utilisé mais également par le placement des marqueurs 
(McGinley et al., 2009). Par conséquent, le même examinateur a positionné les marqueurs pour 
l’ensemble des sujets étudiés.

Le positionnement de ce set de marqueurs permet de définir des repères segmentaires afin 
de quantifier leurs déplacements relatifs ou absolus. Cette quantification des déplacements relatifs 
correspond à la cinématique articulaire et se déroule en deux étapes :

- la définition des repères segmentaires représentatifs de la structure osseuse : pour chaque 
segment, un repère est défini à partir des marqueurs posés sur le sujet et des centres articulaires. Le 
tableau 4 présente les repères segmentaires.

- le calcul des angles d’Euler : ce calcul consiste en la quantification de trois rotations successives 
autour des axes XYZ selon la séquence choisie. Pour le modèle Helen Hayes et avec les repères 
définis précédemment, nous avons la séquence ZYX soit flexion/extension puis, abduction/adduction 
ou varus/valgus puis, rotation interne/rotation externe (Grood and Suntay, 1983), (Kadaba et al., 1990).

Tableau 4 : Repères segmentaires d’après le modèle Helen Hayes. 

Segment Origine et 
axes Direction

o origine au milieu des 2 épines iliaques antéro-supérieures

x dirigé vers le bas, orthogonal au plan formé par les marqueurs Asis et sacrum

y dirigé vers l'avant

z dirigé latéralement vers la droite

o origine au centre articulaire de la hanche

x dirigé vers le centre articulaire du genou

y dirigé vers l'avant

z dirigé latéralement pour la cuisse droite, médialement pour la cuisse gauche

o origine au centre articulaire du genou

x dirigé vers le centre articulaire de la cheville

y dirigé vers l'avant

z dirigé latéralement pour la jambe droite, médialement pour la jambe gauche

o origine au centre articulaire de la cheville

x dirigé vers le bas, orthogonal aux axes y et z

y dirigé vers l'avant du marqueur talon vers le marqueur orteil

z
dirigé latéralement pour le pied droit, médialement pour le pied gauche, 
orthogonal au plan formé par le marqueur talon, le marqueur orteil et le centre 
articulaire de la cheville

Segment 
jambier

Pied

Cuisse

Pelvis
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Le positionnement de ce set de marqueurs permet également la quantification des déplacements 
du centre de masse, COM, dans les trois plans de l’espace (COMx pour le plan antéro-postérieur, 
COMy pour le plan médio-latéral et COMz pour le plan vertical). La position du COM du sujet est 
le barycentre des centres de masses des segments modélisant le sujet. Son calcul est permis par 
l’utilisation de la table anthropométrique proposée par  Dempster en 1955 (Dempster, 1955), la masse 
de chaque segment étant proportionnelle à la masse totale du sujet et la position du centre de masse 
de chaque segment étant proportionnelle aux marqueurs du segment considéré. 

La table anthropométrique proposée par Dempster en 1955 a été utilisée chez les patients 
hémiparétiques à défaut d’une table anthropométrique spécifique à cette population. D’autres auteurs 
ont également fait ce choix méthodologique pour la détermination des déplacements du COM chez 
des patients neurologiques et des sujets âgés au cours de la marche (Catena et al., 2007) (Hahn 
and Chou, 2003). Des modifications morphologiques comme l’atrophie, les infiltrations adipeuses, la 
décalcification font suite à l’AVC (Hachisuka et al., 1997), (Ryan et al., 2002), (Lam et al., 2016) et 
légitimeraient l’utilisation d’une table anthropométrique pour les patients hémiparétiques. Néanmoins, à 
notre connaissance, aucune table spécifique pour cette population n’existe. Idéalement, la détermination 
du centre de masse des patients hémiparétiques peut se faire à partir de données issues de l’imagerie 
médicale, ce qui n’était pas possible dans le cadre de nos études. D’autres tables existent comme 
celle de Zatsiorsky (1990) ou celle de McConville (1980) (Zatsiorsky et al., 1990), (McConville et al., 
1980). Cependant ces tables ont été établies à partir de données de sujets jeunes (âge moyen de 24,8 
ans pour la table de Zatsiorsky et de 27 ans pour McConville), alors que les données de la table de 
Dempster correspondent à des sujets d’une moyenne d’âge de 69 ans, ce qui est plus proche de l’âge 
de la population inclue dans nos études. La table proposée par Dempster est par ailleurs fréquemment 
utilisée par la communauté biomécanique pour l’analyse tridimensionnelle de la marche de patients 
hémiparétiques (Chen et al., 2005), (Cruz et al., 2009), (Hollands et al., 2010).

Parallèlement à cette approche multisegmentaire basée sur une table anthropométrique, une 
autre méthode est proposée pour suivre les déplacements du COM lors de la marche : la quantification 
des trajectoires d’un marqueur unique positionné sur le sacrum (Clark et al., 2012). Situer le COM sur 
le sacrum, en périphérie, nous parait moins pertinent que l’approche multisegmentaire. L’implication 
de la totalité des segments dans la stabilité d’un sujet légitime la détermination multisegmentaire du 
COM par rapport à un marqueur unique (Marigold and Misiaszek, 2009). Gard et al (2004) trouvent 
une supériorité de l’analyse multisegmentaire par rapport au marqueur unique pour l’analyse des 
déplacements verticaux du COM lors de la marche, lorsque la vitesse de celle-ci dépasse 0,8m/s 
(Gard et al., 2004). Aussi, la très récente étude de Tisserand et al (2016) montre qu’un modèle par 
marqueur unique sur le sacrum n’est pas approprié pour estimer le positionnement du COM lors de 
mouvements dynamiques comme la marche et le rattrapage d’équilibre (Tisserand et al., 2016). Dans 
nos études, la tâche impliquant des mouvements dynamiques avec marche et maintien de la stabilité 
et, la vitesse moyenne des participants excédant 0,8m/s, l’approche multisegmentaire nous a semblé 
de fait justifiée. De plus, Rabuffetti et Baroni (1999) montrent qu’un modèle multisegmentaire est plus 
précis qu’un modèle dit « approximatif » basé sur le pelvis (modélisé par 4 marqueurs) pour déterminer 
le COM lors de mouvements libres et de sauts (Rabuffetti and Baroni, 1999). Du fait de l’ensemble des 
raisons précitées, notre choix s’est porté sur l’utilisation de la méthode multisegmentaire avec la table 
proposée par Dempster pour le suivi du COM des patients hémiparétiques et des sujets sains lors du 
TUG. 
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II . 2  Procédure expérimentale

Les patients hémiparétiques et les sujets sains ont réalisé le TUG sans aide technique à vitesse 
spontanée. 

La littérature souligne l’influence des conditions de passation du TUG ou des tâches assis 
debout sur la performance. Ainsi Janssen et al (2002) ont montré que la hauteur de chaise, la présence 
d’accoudoirs, le positionnement des pieds, des genoux et du tronc et l’utilisation des bras impactent 
le mouvement assis debout (la première phase du TUG), avec une diminution des moments articulaires 
des membres inférieurs lorsque le siège est haut, lorsque des accoudoirs sont utilisés et lorsque le 
positionnement des pieds est postérieur (Janssen et al., 2002). Brunt et al (2002) ont également mis en 
évidence une durée de passage assis debout plus importante lorsque le membre inférieur non-parétique 
était placé en avant ou sur une cale (en hauteur) par rapport au membre inférieur parétique (Brunt et al., 
2002). Heung et Ng (2009) ont montré que la hauteur du siège et le côté du demi-tour influençaient la 
performance au TUG des patients hémiparétiques, avec une performance plus rapide lorsque l’assise 
était haute et le demi-tour était effectué du côté parétique (Heung and Ng, 2009). De même, le port et 
le type de chaussures peuvent impacter la performance au TUG (Arnadottir and Mercer, 2000). De ce 
fait, deux conditions ont été évaluées : la condition spontanée et la condition standardisée. 

Dans les deux conditions, les participants portaient le même modèle de chaussures, étaient 
assis sur un même tabouret fixe et les bras étaient positionnés le long du corps (Gilleard et al., 2008), 
(Frykberg et al., 2009). 

La condition spontanée représente les conditions de vie quotidienne, avec une hauteur de siège 
conventionnelle (45cm) (Frykberg et al., 2009), une position de départ spontanée pour les membres 
inférieurs (Frykberg et al., 2012) et le tronc (les bras restant le long du corps pour ne pas participer au 
lever) et aucune instruction quant au sens du demi-tour n’était délivrée. La consigne était alors «Au 
signal, vous vous lèverez, irez faire le tour du cône et vous reviendrez vous asseoir, à vitesse normale, 
sans utiliser les bras pour vous lever et vous asseoir».

La condition standardisée vise à rendre l’examen comparable entre les participants. La hauteur 
du siège correspondait à la distance tête de la fibula / sol (Gilleard et al., 2008), (Janssen et al., 2002), 
les genoux sont fléchis à 100° et les pieds placés symétriquement (Brunt et al., 2002), (Cheng et al., 
1998). Une marque au sol et une vérification goniométrique des amplitudes des genoux permettaient 
de reproduire cette position. Au départ, les participants devaient se redresser (Roy et al., 2006), 
(Gilleard et al., 2008) et effectuer le demi-tour côté parétique (non-dominant pour les sujets sains). La 
consigne était «Au signal, vous vous lèverez, irez faire le tour du cône du côté droit/gauche (selon le 
côté de l’hémiparésie pour les patients hémiparétiques/ le côté non-dominant pour les sujets sains) et 
vous reviendrez vous asseoir, à vitesse normale, sans utiliser les bras pour vous lever et vous asseoir».

Trois essais ont été réalisés et enregistrés pour chaque condition. Afin que le positionnement 
et les consignes de la condition standardisée n’influencent pas la condition spontanée, cette dernière 
était réalisée en premier (Roy et al., 2006). Les consignes étaient redonnées aux participants avant 
chaque essai, spécifiquement selon la condition à effectuer et les participants étaient repositionnés 
avant chaque essai pour la condition standardisée.
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Figure 6 : Capture d’écran d’une scène de demi-tour (vue sagittale) d’un patient hémiparétique lors de la 
passation du TUG au laboratoire.

III  Traitement des données 
Une première phase de traitement des données consiste à analyser les trajectoires des différents 

marqueurs positionnés (interpolation et filtrage : filtre passe-bas Butterworth d’ordre 4 avec une fréquence 
de coupure à 6Hz). Ce traitement a été réalisé via le logiciel fourni avec le système optoélectronique 
(Cortex, Motion Analysis Corporation, Santa Rosa, CA, USA).

La seconde phase de traitement des données consiste à identifier :

- Les évènements du cycle de marche : un cycle correspondant à une pose talon jusqu’à la 
prochaine pose talon du même pied (Perry, 1992). Les événements de contact du pied avec le sol et 
décollement des orteils sont identifiés pour découper le cycle en phase oscillante et phase d’appui. 

- Les 3 phases du TUG : (i) la phase Aller de marche orientée vers le cône. Elle commençait du 
décollement du premier pied et se terminait lors de la première pose du pied en direction du demi-
tour ; (ii) la phase Demi-tour (contournement du cône). Elle commençait de la première pose du pied en 
direction du demi-tour et se terminait lors de la première pose du pied dans l’alignement du tabouret 
(Thigpen et al., 2000) ; (iii) la phase Retour de marche orientée vers le tabouret. Elle commençait lors de 
la première pose du pied dans l’alignement du tabouret et se terminait avec la dernière pose du pied 
avant le demi-tour pour s’asseoir (Frykberg et al., 2009), (Thigpen et al., 2000), (Faria et al., 2012).

Cette identification des événements a été réalisée au moyen du logiciel Mokka (Motion Kinematic 
& Kinetic Analyzer, http ://biomechanical-toolkit.github.io/mokka/index.html).

IV  Les paramètres analysés
A l’issue du découpage des cycles et des phases, une routine développée sous Matlab (R14, 

The MathWorks Inc., Natick, MA, USA) a été utilisée pour le calcul des paramètres biomécaniques de 
chacune des trois phases du TUG analysées. Le déplacement relatif des segments permet le calcul des 
paramètres cinématiques articulaires du TUG.
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IV . 1  Les paramètres spatio-temporels 

La performance de chacune des phases étudiées du TUG correspond à la durée (en sec) de ces 
phases.

Les paramètres spatio-temporels analysés au cours de chaque cycle de marche et chaque phase 
du TUG étaient :

- La vitesse de marche (en cm/s), calculée à partir de la longueur de l’enjambée (distance entre 
le marqueur talon lors de la pose du pied et le même marqueur talon de la pose de pied suivante) et la 
durée du cycle ; 

- La cadence (en nombre de pas / min), calculée à partir des événements pose talon ;

- La longueur de pas (en cm) des deux côtés, distance calculée, pour la longueur du pas gauche, 
entre le marqueur talon du pied droit et la projection du marqueur talon du pied gauche sur la ligne 
d’avancement du pied droit, et inversement pour le pas droit;

- La largeur de pas (en cm), distance calculée entre un marqueur talon et sa projection sur la ligne 
d’avancement du pied opposé;

- Le pourcentage de phase de simple appui (en % du cycle de marche) des deux côtés, calculé 
entre l’événement pose du pied considéré et l’événement suivant décollement du même pied;

- Le pourcentage de phase oscillante (en % du cycle de marche) des deux côtés, calculé entre 
l’événement décollement du pied considéré et l’événement suivant pose du même pied;

IV . 2  Les paramètres de la cinématique articulaire

Les paramètres de la cinématique articulaire analysés au cours de chaque cycle de marche, pour 
les phases Aller, Demi-tour et Retour, étaient les pics de flexion et extension de hanches, de genoux et 
de chevilles des deux côtés. Pour la cheville, le pic de dorsiflexion était calculé uniquement sur la phase 
oscillante. 

Les principaux déficits d’amplitude et schémas de marche décrits chez les patients hémiparétiques 
ont orienté ce choix d’une analyse dans le plan sagittal. Ainsi, la phase oscillante est souvent caractérisée 
par un déficit des pics de flexion (Kerrigan et al., 1991), (Olney and Richards, 1996), (Chen et al., 2005) 
et la phase d’appui par un déficit d’extension de hanche (De Quervain et al., 1996), par un possible 
recurvatum de genou ou une flexion excessive (Olney and Richards, 1996) et un déficit de dorsiflexion 
(possible équin) et de plantarflexion de cheville (Olney and Richards, 1996), (Viel, 2000). 

IV . 3  Les déplacements du centre de masse, comme paramètres de stabilité, 
et le MFC

Nous avons vu dans le chapitre précédent que les déplacements du COM peuvent être considérés 
comme des indicateurs d’un défaut de stabilité, lorsque l’amplitude et la vitesse de ces déplacements 
sont excessives (Chou et al., 2001), (Chou et al., 2003), (Hahn and Chou, 2003), (Kelly et al., 2008). 
Plusieurs auteurs suggèrent effectivement que la majoration des déplacements du COM chez les 
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patients cérébro-lésés par rapport à des sujets sains lors de la marche (Tyson, 1999), (De Bujanda et al., 
2004), (Clark et al., 2012), (Detrembleur et al., 2003) et de tâches plus instables comme l’enjambement 
d’obstacles (Chou et al., 2004) traduit un défaut de stabilité des patients. 

Pour quantifier la stabilité des patients, les paramètres des déplacements du COM sont préférés 
à la marge de stabilité (et au COM extrapolé) proposée par Hof et al (2005) (Hof et al., 2005). L’approche 
proposée par Hof et al considère le corps humain comme un simple pendule inversé, soit une masse 
se balançant au-dessus d’un segment rigide unique (Hof et al., 2005). L’influence des mouvements 
des différents segments des membres inférieurs et des segments sus-jacents ne sont donc pas pris en 
compte dans ce modèle simplifié. La détermination du COM par l’approche multisegmentaire décrite 
précédemment apparait par conséquent plus proche de la réalité. 

Dans la littérature, l’analyse des déplacements du COM lors de la marche en ligne droite se fait 
par rapport à la ligne d’avancement du sujet (Chou et al., 2001), (Catena et al., 2007), (Kelly et al., 
2008), (Clark et al., 2012). Le TUG induit des changements de direction du sujet dans l’espace. La 
marche est d’abord orientée vers le cône, puis il y a une rotation autour de celui-ci et enfin une marche 
orientée vers le siège, en sens inverse de la première phase de marche. La ligne d’avancement des 
sujets lors du TUG est définie par la droite passant par les positions du marqueur sacrum à chaque 
début et fin de cycle avec un repère local mobile (x pour le plan antéro-postérieur, y pour le plan médio-
latéral et z pour le plan vertical).

Les paramètres de déplacements du COM analysés, par rapport à cette ligne d’avancement, 
pour évaluer la stabilité des participants lors du TUG étaient l’amplitude et la vitesse des déplacements 
du COM à chaque cycle de marche dans le plan vertical et dans le plan médio-latéral.

Le minimum foot clearance (MFC), est l’autre paramètre de contrôle de la stabilité  que nous avons 
choisi d’analyser (Hamacher et al., 2011). Ce paramètre est ainsi reconnu comme le reflet d’adaptations 
pour éviter tout accrochage du pied au sol et trébuchement (Weerdesteyn et al., 2008), (Barrett et al., 
2010). De plus, le MFC nous apparait intéressant à quantifier du fait qu’il représente la résultante de la 
cinématique articulaire du membre inférieur. Le calcul du MFC est permis par la mesure de la hauteur 
du marqueur orteil à la phase oscillante par rapport à sa hauteur à la phase d’appui, à chaque cycle 
de marche. Le milieu de la phase oscillante est choisi pour identifier ce minimum puisque cet instant 
correspond à une réduction de la clearance, qui est à l’origine du risque d’accrochage du pied au sol 
(Winter, 1992), (Mills and Barrett, 2001), (Menant et al., 2009). 

IV . 4  Les paramètres de trajectoire

L’étude de la trajectoire locomotrice lors de tâches de navigation nous renseigne sur l’adaptation 
des sujets aux contraintes environnementales. L’analyse de la déviation de la trajectoire locomotrice 
est relativement récente chez les sujets sains (Courtine and Schieppati, 2003), (Hicheur et al., 2007) et 
plus récente chez les sujets présentant une atteinte neurologique (Lamontagne et al., 2010). Certains 
auteurs analysent le suivi d’une trajectoire imposée, d’autres analysent la trajectoire spontanée lors 
d’une tâche de navigation dont seule la cible à atteindre est imposée.
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Nous proposons, dans le cadre de ce travail, le suivi du COM des participants lors du TUG pour 
une approche globale de la trajectoire locomotrice spontanée lors de tâches de navigation. Deux types 
de paramètres sont analysés : la longueur de la trajectoire totale (Hicheur et al., 2007) et la déviation de 
la trajectoire par rapport à une trajectoire de référence. 

Le terme de déviation de la trajectoire est utilisé pour quantifier l’écart de la trajectoire de chaque 
participant (patients hémiparétiques et sujets sains) par rapport à une trajectoire de référence. Cette 
référence correspond généralement à la moyenne des trajectoires normalisées des sujets sains (Hicheur 
et al., 2007). Dans l’objectif de créer cette trajectoire de référence, une analyse préliminaire de nos 
mesures a été réalisée à partir des acquisitions des sujets sains. La normalisation temporelle de la 
trajectoire du COM a été choisie en tenant compte de la performance chronométrique des patients 
hémiparétiques. Nous avons choisi de conserver le plus possible les caractéristiques temporelles et 
spatiales de la trajectoire du COM des patients hémiparétiques. Pour cela, la trajectoire du COM a été 
suréchantillonnée afin d’obtenir une normalisation temporelle sur 1300 points (équivalent à 13 sec à 100 
Hz, performance moyenne des patients hémiparétiques).

Plusieurs approches existent pour quantifier un écart entre deux trajectoires, l’approche spatiale 
et l’approche spatio-temporelle. La distance euclidienne entre deux trajectoires est l’approche spatiale 
la plus couramment utilisée pour l’étude des trajectoires locomotrices des sujets sains (Courtine and 
Schieppati, 2003), (Hicheur et al., 2007). Cette méthode peut être adaptée lorsque les trajectoires 
comparées sont proches d’un point de vue temporel. Cependant, dans le cas de notre étude, les 
patients hémiparétiques mettent plus de temps que les sujets sains pour réaliser le TUG. Le choix de 
méthodes permettant de comparer des signaux de longueur différente parait donc plus adapté que 
le calcul d’une distance euclidienne entre deux points par pas de temps (Ding et al., 2008), (Etienne, 
2011). La distance de Hausdorff (DH) et la déformation temporelle dynamique (Dynamic Time Warping, 
DTW) répondent à ce besoin. La DH est une approche spatiale et la DTW est une approche spatio-
temporelle. Ces paramètres ont été utilisés pour quantifier la déviation de la trajectoire de chaque 
participant par rapport à la trajectoire de référence précédemment définie. Ces paramètres ont largement 
été utilisés dans différents domaines tels que l’analyse de comportements de marche (Psarrou et al., 
2002), (Laxhammar and Falkman, 2011), le suivi d’objets mobiles (Etienne, 2011) ou  la reconnaissance 
d’écriture (Di Brina et al., 2008).

DH est largement utilisée dans la reconnaissance de forme notamment dans le traitement de 
l’image (Huttenlocher et al., 1993). Elle est aussi proposée pour détecter les événements critiques de 
trajectoires locomotrices pour des applications de surveillance (Laxhammar and Falkman, 2011). Pour 
chaque point de chaque trajectoire, l’algorithme recherche le point le plus proche de l’autre trajectoire 
(distance minimale). DH est la plus grande distance parmi ces distances, elle est donc sensible aux 
points excentrés. L’équation correspondant au calcul de DH est la suivante, équation n°1 :

                             
 

              [∑             
 

   
] 

 

 

Où d(A,B) et d(B,A) sont les distances directes euclidiennes entre deux signaux A et B (Laxhammar 
and Falkman, 2011).



62

Chapitre 1: ContexteChapitre 2: Méthodologie générale

La figure 7 illustre la représentation de la DH pour une phase du TUG.

A
B

d(A,B)

d(B,A)

d(A,B)
d(B,A)

Siège 

Cône à contourner 

Trajectoire considérée, A

Trajectoire de référence, B

d(A,B) distance minimale de A vers B 

d(B,A) distance minimale de B vers A 

Figure 7 : Représentation de la distance de Hausdorff pour une phase du Timed Up and Go.

DTW permet de mesurer la similarité entre deux séquences évoluant au cours du temps, 
indépendamment de la vitesse ou des accélérations/décélérations. Cette méthode a d’abord été 
appliquée dans le domaine de la reconnaissance vocale (Sakoe and Chiba, 1978). Ce paramètre a 
récemment été utilisé pour identifier le pattern de cheville lors de la marche, enregistré par accéléromètre 
(Sun and Yuao, 2012). DTW correspond aux distances cumulées qui minimisent le chemin de deux 
séries A et B (Berndt and Clifford, 1994) (Fu, 2011). L’équation correspondant au calcul de DTW est la 
suivante, équation n°2 :

                             
 

              [∑             
 

   
] 

 

 Où d(aik,bik) est la distance euclidienne entre deux points des séries A et B.

Le principe revient, dans un premier temps, à calculer la distance entre chaque point des séquences 
A et B. Ces distances sont ensuite entrées dans une matrice et l’algorithme cherche un appariement 
optimal (coût minime) entre les points des séquences. Un point d’une séquence est associé à un ou 
plusieurs points de l’autre séquence. La DTW correspond ainsi au chemin optimal qui apparie les points 
des séquences ; sachant que ce chemin est construit selon des contraintes. Les contraintes sont la 
monotonie qui consiste en une recherche chronologique (sans revenir en arrière sur l’échelle temps), la 
continuité qui consiste en une exploration voisine (sans saut dans la trajectoire), la limite qui considère 
toute la séquence de son début à la fin, le fenêtrage qui considère qu’un point est forcément dans la 
région voisine de l’autre trajectoire et la contrainte de pente qui évite les larges excursions (restriction de 
la pente) (Berndt and Clifford, 1994). Le résultat de DTW est sans unité, sachant que les grandes valeurs 
correspondent à de grandes déviations entre la trajectoire considérée et la trajectoire de référence. La 
figure 8 illustre la représentation de la DTW.
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	 Partie A					            Partie B

	 Partie C					           Partie D (d’après Ciaccia P)

Figure 8 : Représentation de la déformation temporelle dynamique (DTW) pour une phase du Timed Up and 
Go  (Partie A : Matrice de la DTW pour les séquences A et B et chemin optimal en rouge minimisant le coût des 
distances; Partie B : Représentation de la DTW lors d’une phase du TUG ; Partie C : Matrice de la DTW pour les 
trajectoires A et B lors de la phase considérée du TUG et chemin optimal minimisant le coût des distances pour cette 
phase ; Partie D : exemple graphique de DTW en 3 dimensions). 

DH et DTW ont été calculés pour quantifier la déviation entre la trajectoire considérée et la 
trajectoire de référence en considérant la totalité du TUG et en considérant chacune des sous-phases 
analysées du TUG. DH et DTW sont complémentaires dans la mesure où DH permet de déterminer 
le point le plus extrême entre la trajectoire du sujet et la trajectoire de référence et, DTW permet de 
quantifier la déviation sur la globalité de la phase considérée (et sur la trajectoire totale).

V   Limites 
L’objectif de ce travail étant de caractériser l’organisation des patients hémiparétiques au 

cours de tâches de navigation, l’analyse biomécanique du TUG s’est focalisée sur les phases du 
test impliquant des déplacements locomoteurs. Ainsi les phases de marche Aller, du Demi-tour et de 
marche Retour ont été étudiées alors que les phases de lever et d’assise n’ont pas fait l’objet d’analyse. 
Précisons cependant que de nombreuses études ont déjà porté sur l’analyse biomécanique des tâches 
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assis debout et debout assis chez des patients hémiparétiques et des sujets sains alors, qu’à notre 
connaissance, aucune n’a proposé une telle analyse pour des tâches de navigation (Cheng et al., 1998), 
(Galli et al., 2008), (Lecours et al., 2008), (Dion et al., 2003), (Frykberg et al., 2009). Néanmoins, cette 
absence d’analyse dans nos études pourrait constituer une limite. En effet, nous ne pouvons exclure 
une possible influence de la tâche de lever sur la réalisation des tâches de navigation lui succédant. 

Des sources d’erreurs liées à la capture du mouvement par système optoélectronique existent. 
On distingue les erreurs instrumentales des erreurs expérimentales. Les premières sont liées aux outils 
de mesure utilisés (précision des caméras, performance de l’algorithme de reconstruction 3D). Pour le 
système Motion Analysis, cette erreur est de l’ordre de 2 à 5mm et de 0.5° lorsque l’on considère le 
déplacement de 2 marqueurs sur une baguette rigide (Richards, 1999), (Bonnefoy et al., 2005b). Les 
erreurs expérimentales  comprennent le placement des marqueurs, le mouvement des tissus mous 
comme le glissement de la peau sur les repères osseux, le mouvement des masses musculaires et 
graisseuses, la possible perte de localisation des marqueurs lors du TUG, le découpage des cycles 
de marche et des phases du TUG, basé sur une analyse visuelle. Afin de limiter ces sources d’erreur, 
le même matériel a été utilisé et le même intervenant a mené toutes les expérimentations, en veillant à 
conserver la standardisation des passations des TUG. Nous pouvons donc considérer les artéfacts liés 
à ces sources d’erreurs comme constants et reproductibles entre les sujets et les conditions analysées. 
De plus, les études de reproductibilité de l’analyse de marche évaluée par système optoélectronique 
montrent une très grande reproductibilité de la cinématique articulaire dans le plan sagittal avec moins 
de 4° d’erreur, paramètres que nous analysons dans nos études (McGinley et al., 2009). Spécifiquement 
chez le patient hémiparétique, les coefficients de corrélations intrasession et intersession, compris entre 
0.85 et 0.99 pour les paramètres spatio-temporels et la cinématique articulaire dans le plan sagittal, 
montrent une très bonne reproductibilité de ces mesures plaçant l’analyse tridimensionnelle de la marche 
comme un outil de choix dans la quantification des paramètres biomécaniques (Yavuzer et al., 2008).

Le choix de la table anthropométrique de Dempster peut constituer une limite à partir du moment 
où elle a été établie à partir de données de sujets sains. Cependant, l’impossibilité d’utiliser l’imagerie 
médicale et l’absence de table anthropométrique spécifique aux patients hémiparétiques nous a 
conduits au choix de la table établie avec des sujets dont l’âge est le plus proche de notre population 
étudiée.  

Concernant les paramètres cinématiques étudiés, notre analyse a ciblé le plan sagittal, 
correspondant aux déficits d’amplitude et aux schémas de marche les plus fréquemment décrits chez les 
patients hémiparétiques. Cependant, l’absence d’analyse des paramètres de la cinématique articulaire 
dans le plan frontal et transversal et, de la cinématique du pelvis peut constituer une limite quant à 
l’interprétation de certains de nos résultats. En effet, une possible mise en jeu de ces mouvements lors 
de la phase oscillante de marche chez les patients hémiparétiques peut restreindre la compréhension 
de l’organisation de ces patients, notamment pour le MFC. De la même manière, l’absence de données 
cinétiques pourrait constituer une limite dans l’interprétation de l’organisation biomécanique des patients 
hémiparétiques mais la tâche de navigation ne se prêtait pas à leur analyse du fait d’une contrainte de 
matériel dans notre laboratoire.
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VI  Le bilan clinique
Les patients hémiparétiques ont bénéficié d’un examen clinique, réalisé par le même thérapeute, 

incluant :

- Une évaluation de la sensibilité (superficielle et profonde) du membre inférieur, au moyen du 
Nottingham Sensory Assessment avec un score de 0 (sensibilité absente) à 2 (sensibilité normale) pour 
la sensibilité superficielle et un score de 0 (sensibilité absente) à 3 (place l’autre membre en miroir à 10° 
près) pour la sensibilité profonde  (Lincoln et al., 1991);

 - Une évaluation de la spasticité pour les muscles quadriceps, rectus femoris, ischio-jambiers 
et triceps sural, au moyen de l’échelle Ashworth modifiée avec un score de 0 (tonus normal) à 4 (le 
segment affecté est fixé en flexion ou en extension) pour chaque muscle donné (Bohannon and Smith, 
1987). La présence d’une éventuelle griffe d’orteils était également recherchée et consignée;

- Une évaluation de la motricité volontaire pour les fléchisseurs et extenseurs de hanche, genou 
et cheville, au moyen de l’échelle Medical Research Council (MRC) scale avec un score entre 0 (aucune 
contraction musculaire décelée) et 5 (force comparable au côté opposé) pour chaque groupe musculaire 
étudié (Held and Pierrot-Desseilligny, 1969);

- L’Index de Barthel évaluant l’indépendance dans les activités de vie quotidienne sur un score de 
100 (Mahoney and Barthel, 1965);

- La New Functional Ambulation Classification (NFAC), évaluant l’indépendance à la marche sur 
un score de 8 (Brun et al., 2000);

- La Berg Balance Scale (BBS), évaluant les capacités d’équilibre sur un score de 56 (Berg et al., 
1992);

- L’Activities-specific Balance Confidence (ABC) scale, évaluant la confiance qu’a le patient en 
son équilibre lors de la réalisation de différentes activités, avec un score entre 0 (aucune confiance) et 
100% (pleine confiance) pour chaque activité étudiée (Powell and Myers, 1995), (Salbach et al., 2006);

- Un interrogatoire relatif aux chutes, à savoir : 

- la fréquence des chutes durant les 3 derniers mois précédents l’inclusion (« Combien 
de fois êtes-vous tombé ces 3 derniers mois ? »), 

- les circonstances («Etes-vous tombé  en intérieur  ou en extérieur  ? Dans quelles 
circonstances ? Lors du lever d’un siège ? En marchant ? Lors d’un demi-tour ? Lors 
de l’assise sur un siège ? Au cours d’une autre activité ? Laquelle ? Racontez-moi votre 
chute»), 

- la peur de chuter à estimer entre 0 (pas peur de chuter) et 10 (extrêmement peur de 
chuter) ;
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Le tableau 5 présente les résultats des principales évaluations cliniques, les détails figurant dans 
les annexes 2, 3 et 4. 

Tableau 5  : Médianes des scores issus des évaluations de la sensibilité, de la spasticité, de la motricité 
volontaire et des tests fonctionnels des patients hémiparétiques.

Pression genou Pression cheville Pression dos pied Pression plante pied

2 2 2 1

Hanche Genou Cheville Orteils

3 3 3 2

Extenseurs genou Fléchisseurs genou Fléchisseurs 
plantaires cheville Griffe Orteil

1 0 1 1

Fléchisseurs hanche Extenseurs hanche Extenseurs genou Fléchisseurs genou Fléchisseurs 
dorsaux cheville

Fléchisseurs 
plantaires cheville

4 4 5 3 4 2

Barthel NFAC BBS ABC Fréquence chute

100 7 51 78,8 1

Sensibilité superficielle

Sensibilité profonde

Spasticité

Motricité volontaire

Evaluations fonctionnelles
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Etude 1: Caractérisation de l’organisation des patients hémiparétiques  à partir de 
paramètres cinématiques liés à la performance chronométrique lors des phases de marche 
orientée et de demi-tour du TUG.

Le score chronométrique au TUG est largement admis comme un bon indicateur de performance 
locomotrice chez les patients hémiparétiques (Podsiadlo and Richardson, 1991), (Flansbjer et al., 
2005), (Ng and Hui-Chan, 2005). Cependant le score chronométrique seul ne nous renseigne pas sur 
les mécanismes de réalisation des tâches composant le TUG. La compréhension de ces mécanismes 
permise par une analyse biomécanique individualisant les tâches de navigation du TUG pourrait s’avérer 
intéressante cliniquement. En effet, cette analyse pourrait caractériser l’organisation des patients et 
constituer un aide à l’orientation thérapeutique. Cette caractérisation serait alors spécifique de la tâche 
locomotrice : marche orientée vers un but ou contournement d’un obstacle, activités qui reflètent des 
tâches couramment utilisées au quotidien. 

L’objectif de cette première étude était de déterminer quels paramètres spatio-temporels et 
cinématiques étaient le plus liés à la performance chronométrique pour les phases de marche orientées 
(Aller et Retour) et de demi-tour du TUG chez des patients hémiparétiques. 

Une étude préliminaire évaluant 60 patients hémiparétiques a mis en évidence que, parmi tous les 
paramètres spatio-temporels et cinématiques obtenus lors d’une analyse de la marche conventionnelle 
en ligne droite, le pourcentage de phase de simple appui du côté parétique était le facteur le plus 
prédictif et le plus corrélé à la performance globale chronométrique du TUG (Bonnyaud et al., 2015). 
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Par ailleurs il est connu qu’une augmentation de la vitesse de marche des patients hémiparétiques 
s’associe à une augmentation du pic d’extension de hanche du côté parétique (Lamontagne and Fung, 
2004). Pour la présente étude, nous avons donc émis l’hypothèse que ces deux paramètres étaient 
particulièrement liés à la performance chronométrique des tâches du TUG.

Vingt-neuf patients hémiparétiques ont effectué des TUG, instrumentés par un système 
tridimensionnel d’analyse du mouvement. Deux conditions ont été évaluées, une condition spontanée, 
reflétant la vie quotidienne du patient et une condition standardisée, avec un positionnement et des 
recommandations spécifiques. Une analyse par régression linéaire multiple pas à pas ascendante a 
permis de mettre en évidence, parmi les paramètres spatio-temporels et de la cinématique articulaire, 
les paramètres les plus explicatifs de la performance des patients des phases du TUG.
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Abstract

Background

The timed up and go test (TUG) is a functional test which is increasingly used to evaluate

patients with stroke. The outcome measured is usually global TUG performance-time. As-

sessment of spatiotemporal and kinematic parameters during the Oriented gait and Turn

sub-tasks of the TUG would provide a better understanding of the mechanisms underlying

patients’ performance and therefore may help to guide rehabilitation. The aim of this study

was thus to determine the spatiotemporal and kinematic parameters which were most relat-

ed to the walking and turning sub-tasks of TUG performance in stroke patients.

Methods

29 stroke patients carried out the TUG test which was recorded using an optoelectronic sys-

tem in two conditions: spontaneous and standardized condition (standardized foot position

and instructed to turn towards the paretic side). They also underwent a clinical assessment.

Stepwise regression was used to determine the parameters most related to Oriented gait

and Turn sub-tasks. Relationships between explanatory parameters of Oriented gait and

Turn performance and clinical scales were evaluated using Spearman correlations.

Results

Step length and cadence explained 82% to 95% of the variance for the walking sub-tasks in

both conditions. Percentage single support phase and contralateral swing phase (depend-

ing on the condition) respectively explained 27% and 56% of the variance during the turning

sub-task in the spontaneous and standardized conditions.
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Discussion and Conclusion

Step length, cadence, percentage of paretic single support phase and non-paretic swing

phase, as well as dynamic stability were the main parameters related to TUG performance

and they should be targeted in rehabilitation.

Introduction
Patients with stroke-related hemiparesis frequently have impaired balance and gait, limiting
daily life activities. The improvement of locomotor skills is therefore a major aim of stroke re-
habilitation [1] and an accurate assessment of the patient’s impairments and function is essen-
tial for treatment planning (surgical, pharmacological or physiotherapy-related). The Timed
Up and Go (TUG) test [2] is widely used to assess locomotor capacity in stroke patients [3].
This test measures the time required to rise from a chair, walk 3 meters, turn, walk back and sit
down again, thus evaluating tasks which are regularly encountered in daily life. Although the
TUG is a good general indicator of locomotor function, the timed global performance does not
provide any information regarding the mechanisms underlying the patient’s disabilities and
specific problems relating to each sub-task are not highlighted [4]. Wall et al (2000) thus pro-
posed the Expanded Timed Up and Go test, using video recordings of each sub-task in order to
identify the impairments which reduce the patient’s performance [4]. Similarly, Faria et al
(2013) proposed the TUG-ABS (Assessement of Biomechanical Strategies) in order to aid deci-
sion making. It consists of a 15-item scale of biomechanical strategies for each sub-task of the
TUG [5]. The purpose of both these tests is to identify the mechanisms which reduce patient
performance in each sub-task of the TUG.

Motion analysis would be a pertinent method to investigate biomechanical aspects of the
TUG. The use of instrumental biomechanical tools to assess functional tasks has increased over
the past few years. Galli et al (2008) and Lecours et al (2008) both quantified kinematics and ki-
netics during sit to stand in subjects with stroke and healthy subjects [6, 7]. Dion et al (2003)
and Frykberg et al (2009) assessed a sit to walk task in stroke patients using a 3D optoelectronic
system and force plates [8, 9]. Several studies have evaluated the TUG test using accelerometers
in patients with Parkinson’s disease and healthy subjects [10, 11, 12]. The pertinence of the ac-
celerometers was demonstrated by the fact that the timed TUG performance did not differenti-
ate between the groups but the accelerometer analysis did. Range of motion during sit-to-stand
and stand-to-sit, turning velocity, cadence and trunk rotation velocity were all found to be re-
duced in the patients [10, 11].

Three-dimensional analysis using an optoelectronic system is the current gold standard for
the biomechanical assessment of patients with gait abnormalities [13]. This method is pertinent
for the analysis of spatio-temporal and kinematic parameters of the paretic and non-paretic
lower limbs during each sub-task of the TUG and would increase understanding of the main
mechanisms which underlie performance in stroke patients. Moreover, the results would help
to optimize rehabilitation techniques which aim to improve locomotor capacity.

The aim of this study was thus to determine which spatio-temporal and/or kinematic pa-
rameters would be the most related to performance in Oriented gait and Turn sub-tasks of the
TUG test (time to perform the sub-task) in stroke patients. We hypothesized that the percent-
age of single support phase and peak hip extension on the paretic side would be particularly re-
lated to the performance of Oriented gait and Turn sub-tasks of the TUG. The percentage of
single support phase during gait has been shown to predict the time to perform the entire TUG
test and peak hip extension has been shown to be associated with gait speed [14, 15].
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Methods

Subjects
Twenty nine participants with chronic hemiparesis were included (18 men and 11 women,
mean age 54.2±12.2 years) (Table 1). The inclusion criteria were: age over 18 years, hemiparesis
due to stroke, ability to carry out the TUG test several times without any assistive devices and
medically stable enough for participation in the protocol. Patients were excluded if they had
other neurological, orthopedic or medical disorders that might interfere with the test. All sub-
jects gave written consent before participation. This study was performed in accordance with
the ethical codes of the World Medical Association, was approved by the local ethics committee
(Comité de protection des personnes Ile de France XI, Ref 13005. CNIL, Ref DR-2013-283)
and the individuals have given their written informed consent.

Experimental procedure
TUG test analysis: Data collection and processing. 3D-TUG analysis was carried out

using an optoelectronic motion capture system (sampling frequency 100 Hz, Motion Analysis
Corporation, Santa Rosa, CA, USA). Markers were fixed to specific bony landmarks on both
sides of the body according to the Helen Hayes marker set [16, 17]: the middle-toe, the heel,
the medial and lateral malleoli of the ankle, the shank, the medial and lateral femoral condyles,
the thigh, the anterior superior iliac spines, the tip of the acromion process, the lateral epicon-
dyle of the humerus, the center between the styloid processes of the radius and ulna, the sacrum
and an offset was fixed over the right scapulae. The greater trochanter and the anterior superior
iliac spine were added to improve the reconstruction of the trajectories of joint coordinate sys-
tems. To ensure good reliability, the same person positioned all the markers on all the subjects
[13] and participants all wore the same type of comfortable shoes [18]. Participants were seated
on a stool with their arms held out from the body [19, 9]. They were asked to stand up, walk
3m to a cone, turn around the cone, return to the stool and sit down, at their natural speed
without any walking aids or orthoses. Three trials were recorded for each condition (described
below).

It has been shown that seat height, foot position and turning direction influence the sit to
stand movements and TUG performance in healthy and stroke subjects [20, 21, 22, 23]. Some
studies have attempted to simulate real life conditions during the TUG (standard chair height,
natural starting position) [9, 22] while others have used standardized conditions [8, 21, 22]. In
the present study, Oriented gait and Turn sub-tasks performance were assessed in both the
spontaneous (Spont) and standardized (Stand) conditions. The Spont condition was performed
first [22]. In this condition, subjects sat on a 45cm-high stool to imitate standard chair height
[9], they could position their feet freely and no instruction was given regarding the direction of
the turn. In the standardized condition (Stand), seat height was set to 100% of the distance
from the fibular head to the floor [20], knees were flexed at 100° and feet were placed symmet-
rically [24, 21]. Participants were instructed to look at the cone at the beginning of the task and
to turn towards the paretic side.

Marker trajectories were recorded using 8 infrared cameras and filtered using a low-pass
Butterworth filter with a cut off frequency of 6 Hz [25]. Anatomical frames were defined from
the position of the markers in the reference standing position. This model was used to analyses
the spatio-temporal and kinematic parameters. Open-source Biomechanical Tool Kit package
for MATLAB [26] was used to define the phases of the gait cycle and sub-tasks of the TUG.
The gait phases were defined according to Perry [27] and sub-tasks of the TUG were defined
according to previous studies [9, 28, 29]. Three sub-tasks were analyzed i) ‘Go’ = walk forward
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to cone: begins at toe off of the first step and ends with the first foot strike in the direction of
the turn; ii) ‘Turn’ = walk around the cone: ends at the first foot strike lined up with the stool
[28] and iii) Return = walk back to stool: ends with foot strike of the last step prior to the turn
to sit. The decision not to analyze the two other sub-tasks of the TUG (stand-up and sit down
are discussed in the limits section).

The data were then exported to Matlab (R14, The MathWorks Inc., Natick, MA, USA) for
calculation of the biomechanical parameters in each sub-task.

The parameters analyzed were:

1. Time taken to perform each sub-task, which corresponded to TUG performance.

2. Spatiotemporal parameters: cadence, width, and step length and percentage of single sup-
port phase (%SSP) and swing phase (%SP) for each limb.

3. Kinematic parameters: peak flexion and extension of the hip, knee and ankle on the paretic
and non-paretic sides. For the ankle, maximal dorsiflexion was also calculated during
swing phase.

Clinical evaluation. Spasticity of the whole quadriceps, rectus femoris (one head of the
quadriceps), hamstring and triceps surae was evaluated with the Modified Ashworth Scale
(MAS) [30]. Strength of the hip, knee and ankle flexor and extensor muscles was assessed with
the Medical Research Council (MRC) scale [31]. The scores of the MRC and MAS were
summed. The presence of claw toes was also noted and sensory impairment was assessed with
the Nottingham Sensory Assessment [32]. The Berg Balance Scale (BBS) was used to evaluate
balance capacity [33, 34] and the Activities-specific Balance Confidence (ABC) scale was used
to quantify the level of confidence (from 0 to 100%) to carry out activities without losing bal-
ance [35]. Participants were also asked to report the number of falls within the last 3 months
and to estimate their fear of falling on a visual analog scale between 0 (not afraid) and 10 (ex-
treme fear of falling). The same physiotherapist assessed all the participants.

Statistical analysis
Descriptive statistics including means and standard deviations were calculated for each param-
eter and Oriented gait (Go, Return) and Turn in both conditions (Spont and Stand). To identi-
fy the spatiotemporal and kinematic parameters which were the most related to Oriented gait
(Go and Return) and Turn performance, a stepwise multiple regression analysis with forward
selection was used. The number of variables included in the stepwise analysis has to be small
compared to the number of subjects [36]. Firstly, to select the data entered in the stepwise
model, we performed Pearson’s correlations between all spatiotemporal and kinematic param-
eters and Go, Turn and Return performance (level of significance p<0.05). Spatio-temporal
and kinematic variables which were significantly correlated with TUG performance were then
used for the stepwise analysis. The stepwise multiple regression is particularly recommended to
assess the association between several independent variables and a single continuous variable.
It selects parameters that best explain the variability of TUG at a significance level of p<0.01
[37, 38]. Multiple linear regression analysis is an extension of simple linear regression used to
assess the association between two or more independent variables and a single continuous vari-
able. The results of a multiple linear regression is expressed by the following equation:
Y = b0+ b1X1+ b2X2+. . ..+ bpXp where Y is the explanatory value, X1 through Xp are p distinct
explanatory variables, b0 is the value of Y when all the independent variables (X1 through Xp)
are equal to zero and b1 to bp are the estimated regression coefficients. Each regression
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coefficient represents the change in Y relative to a one unit change in the respective
independent variable.

A Spearman’s test was then used to evaluate correlations between variables found to explain
TUG performance from the stepwise analysis and clinical tests since clinical data were not con-
tinuous (level of significance p<0.05).

Results
Results of the Oriented gait (Go and Return) and Turn performance and spatiotemporal and
kinematic parameters for each sub-task and both conditions (Spont and Stand) are presented
in Table 2. Mean (sd) time to perform the task was:

In Spont: 4.83(1.18)s for Go, 2.98 (0.73)s for Turn and 4.23(1.02)s for Return;
In Stand: 4.56(1.01)s for Go, 3.16(0.84)s for Turn and 3.81(0.91)s for Return.
In Spont, sixteen participants turned towards the paretic side, 10 towards the non-paretic

side and 3 changed turn direction within the 3 trials.
Median summed spasticity score was 4±3.6, median summed MRC score was 23±5.7, medi-

an pressure score on the sole of the foot was 1±0.5 and median proprioception score for the toe
was 2±1.1 (both assessed with Nottingham Sensory Assessment). Eighteen subjects had claw
toe in standing. Mean BBS score was 50.5±2.3, mean ABC score was 76.3±12.9. The median
rate of falls was 1±0.7 and median fear of falling score was 2±3.2.

Pearson’s correlation between Oriented gait and Turn performance and
biomechanical parameters

Spont. Go: step length, %SP and %SSP on both sides and cadence and peak hip flexion on
the paretic side were significantly negatively correlated with Go performance.

Turn: paretic step length and %SP and non-paretic %SSP were significantly negatively cor-
related with Turn performance.

Return: step length and %SSP on both limbs, non-paretic %SP and cadence were significant-
ly negatively correlated with Return performance.

Stand. Go: step length, %SP and %SSP on both sides and cadence were significantly nega-
tively correlated with Go performance.

Turn: %SP and %SSP on both sides and paretic step length and paretic peak knee extension
were significantly negatively correlated with Turn performance.

Return: step length, %SP and %SSP on both sides and cadence were significantly negatively
correlated with Return performance.

Stepwise regression
In Spont. Step length on both sides and cadence were selected for Go, explaining 93% of

the variance of Go performance.

Go performance
¼ 14:98� 0:05 paretic Step length � 0:05 Cadence � 0:06 non � paretic Step length

For Turn, non-paretic %SSPwas the only variable selected, explaining 27% of the variance
of Turn performance.
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➢ Turn performance = 6.8 − 0.08 non - paretic %SSPFor Return, step length on both sides and
cadence were selected, explaining 82% of the variance of Return performance.

Return performance
¼ 13:7� 0:05 paretic Step length� 0:05 Cadence� 0:06 non� paretic Step length

Table 2. TUG performance and spatiotemporal and kinematic parameters for each sub-task and both
conditions (Spont and Stand).

Spont Stand

Go Turn Return Go Turn Return

TUG performance (s) 4.83
(1.18)

2.98
(0.73)

4.23
(1.02)

4.56
(1.01)

3.16
(0.84)

3.81
(0.91)

Cadence (step/min) 92.27
(10.98)

92.98
(15.36)

91.3
(10.52)

93.48
(11.13)

92.6
(11.82)

92.99
(10.49)

Width (cm) 16.14
(5.19)

17.63
(6.14)

15.86
(5.07)

17.10
(5.38)

22.33
(4.75)

15.99
(4.82)

Step length paretic side (cm) 45.51
(8.03)

31.38
(10.09)

42.73
(7.66)

45.29
(8.15)

27.69
(9.82)

43.92
(7.09)

Step length non paretic side
(cm)

40.58
(10.23)

27.08
(11.14)

41.34
(9.61)

42.29
(8.9)

31.7
(9.21)

42.69
(8.8)

% SSP paretic side (%) 28.09
(3.87)

25.26
(4.99)

28.65
(3.75)

28.45
(3.98)

26.8
(4.3)

29.2
(3.69)

% SSP non paretic side (%) 39.56
(3.71)

38.39
(3.29)

39.2
(3.08)

39.9
(3.36)

36.52
(4.35)

39.15
(2.83)

% SP paretic side (%) 39.14
(3.49)

38.19
(3.13)

38.48
(3.08)

39.34
(3.28)

36.53
(4.13)

38.63
(2.87)

% SP non paretic side (%) 28.54
(3.76)

24.67
(4.93)

28.53
(3.70)

28.65
(3.62)

26.78
(4.3)

29.34
(3.53)

Peak hip flexion paretic side (°) 41.79
(10.27)

37.63
(9.33)

37.36
(9.44)

40.57
(10.59)

35.93
(9.64)

36.42
(9.6)

Peak hip flexion non paretic side
(°)

47.42
(8.42)

43.09
(7.64)

45.53
(8.15)

47.15
(8.42)

43.77
(8.25)

44.83
(8.13)

Peak hip extension paretic side
(°)

-2.65
(8.58)

-6.06
(9.22)

-1.57
(8.42)

-2.83
(8.54)

5.47
(9.34)

-1.15
(8.32)

Peak hip extension non paretic
side (°)

4.32
(8.23)

-0.48
(8.44)

5.03
(8.32)

4.45
(8.77)

3.06
(8.61)

5.63
(8.66)

Peak knee flexion paretic side
(°)

45.31
(8.7)

41.35
(9.53)

42.93
(10.74)

44.13
(8.58)

40.15
(8.43)

44.28
(10.36)

Peak knee flexion non paretic
side (°)

70.33
(5.25)

66.07
(8.17)

70.27
(5.33)

70.49
(5.03)

69.41
(5.61)

69.93
(5.14)

Peak knee extension paretic
side (°)

-2.31
(7.2)

-2.80
(7.7)

-0.64
(6.81)

-2.01
(7.07)

-2.62
(7.46)

-1.14
(6.27)

Peak knee extension non
paretic side (°)

-6.22
(5.79)

-7.14
(5.06)

-5.18
(5.1)

-5.75
(5.23)

-5.11
(5.14)

-5.12
(5.56)

Peak ankle dorsiflexion swing
phase paretic side (°)

1.71
(6.92)

0.89
(6.43)

0.27
(6.32)

1.26
(7.28)

0.18
(8.67)

0.63
(7.39)

Peak ankle dorsiflexion swing
phase non paretic side (°)

14.82
(6.36)

17.7
(9.22)

16.02
(7.44)

16.34
(6.17)

13.82
(6.09)

15.05
(6.89)

Peak ankle plantarflexion paretic
side (°)

10.38
(7.88)

7.51
(7.81)

10.08
(7.99)

10.37
(7.79)

9.85
(9.54)

10.82
(8.6)

Peak ankle plantarflexion non
paretic side (°)

9.61 (5.4) 7.01
(8.19)

10.22
(6.06)

11.26
(6.16)

9.92
(5.61)

10.73
(6.21)

doi:10.1371/journal.pone.0129821.t002
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In Stand. For Go, step length on both sides and cadence were selected, explaining 95% of
the variance of Go performance.

➢ Go performance
¼ 13:38� 0:06 paretic Step length� 0:04 Cadence� 0:05 non� paretic Step length

For Turn, non-paretic %SPand paretic %SSP were selected, explaining 56% of the variance
of Turn performance.

Turn performance ¼ 5:23� 0:39 non� paretic %SPþ 0:32 paretic %SSP

For Return, non-paretic %SP, cadence and step length on both sides were selected, explain-
ing 87% of the variance of Return performance.

Return performance
¼ 13:1� 0:09 non� paretic %SP� 0:04 Cadence� 0:04 paretic Step length

Results of the stepwise analysis for both conditions are summarized in Table 3.

Correlation between biomechanical parameters selected and clinical
data
Table 4 presents the results of the correlation between the spatiotemporal and kinematic pa-
rameters selected in the stepwise analysis, and the clinical data.

The BBS score was positively related to most parameters. MRC, fall frequency, fear of falling
and MAS were only related to a few parameters. No correlations were found between the pres-
ence of claw toe, foot sole pressure score, toe proprioception score and ABC score and any
biomechanical parameter.

Discussion
To the best of our knowledge, the present study is the first to use 3D motion analysis to investi-
gate spatiotemporal and kinematic parameters during Oriented gait and Turn sub-tasks of the
TUG test in order to provide a deeper understanding of locomotor control in patients with
stroke. The aim of this study was to determine the spatio-temporal and kinematic parameters
which relate to performance in Oriented gait and Turn sub-tasks of the TUG in stroke patients.
The results showed that in the spontaneous condition, step length on both sides and cadence
best explained Go and Return performance, whereas percentage non-paretic SSP best ex-
plained Turn. In the standardized condition, the same parameters were selected in the stepwise

Table 3. Stepwise results for each sub-task and both conditions (Spont and Stand).

Spont

Go Turn Return

Step length paretic side Step length paretic side

step length non paretic side %SSP non paretic side step length non paretic side

cadence cadence

Stand

Go Turn Return

Step length paretic side %SSP paretic side Step length paretic side

step length non paretic side %SP non paretic side step length non paretic side

cadence cadence

%SP non paretic side

doi:10.1371/journal.pone.0129821.t003
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analysis for Go and Return, and in addition, percentage non-paretic SP was selected in Turn
and Return and percentage paretic SSP in Turn. Our hypothesis is partly confirmed since the
percentage of single support phase was related to timed Turn performance but peak hip exten-
sion was not.

It is not surprising that step length and cadence explained performance in the walking sub-
tasks since gait speed is the product of step length and cadence. Correlations have previously
been found between total TUG time and gait speed [3]. Improvements in gait speed have also
been shown to be more related to increased step length than other biomechanical variables
after rehabilitation in stroke patients [39]. It is surprising that step width was not related to
Oriented gait performance since this parameter is related to stability in stroke patients [40, 41].
However, increased step width increases the mechanical cost of gait in the frontal plane [42]
which could explain the lack of association with forward progression in the walking sub-tasks
of the TUG. Fear of falling was negatively correlated with step length on the non-paretic side,
but not on the paretic side. Few studies have evaluated the relationship between fear of falling
and step length in stroke. Park et al. showed that fear of falling was related to step cycle while
walking but not to step length in only 12 stroke subjects, which contrasts with the present re-
sults [43]. However, many studies in elderly subjects have also demonstrated a relationship be-
tween fear of falling and decreased step length [44, 45, 46]. This is likely related to the fact that
patients can more easily adapt non-paretic limb motion [47] in order to increase gait stability.

Table 4. Correlation between Oriented gait and Turn performance explanatory spatiotemporal and kinematic parameters from the stepwise analy-
sis and the clinical data.

Spasticity Claw
toe

MRC Foot sole
pressure

Toe
proprioception

BBS ABC Fall
frequency

Fear of
falling

Step length paretic side Go
Spont

-0.04 0.03 0.11 0.20 0.06 0.46* 0.35 0.27 -0.33

Step length paretic side Return
Spont

-0.18 -0.15 0.29 0.26 0.15 0.42* 0.22 0.24 -0.22

Step length non paretic side Go
Spont

0.02 -0.02 0.25 0.17 0.19 0.43* 0.18 0.12 -0.41*

Step length non paretic side
Return Spont

-0.08 -0.02 0.18 0.26 0.27 0.47* 0.13 0.03 -0.44*

Cadence Go Spont 0.27 0.01 -0.09 -0.12 -0.12 -0.04 0.31 0.32 -0.17

Cadence Return Spont 0.32 -0.07 -0.12 -0.16 -0.11 -0.06 0.36 0.27 -0.21

% SSP non paretic side Turn
Spont

0.21 0.08 0.02 0.07 -0.07 0.04 0.36 -0.02 -0.08

Step length paretic side Go
Stand

-0.11 0.03 0.16 0.16 0.03 0.44* 0.33 0.27 -0.30

Step length paretic side Return
Stand

-0.10 0.10 0.12 0.13 0.05 0.26 0.26 0.42* -0.26

Step length non paretic side Go
Stand

0.00 -0.01 0.26 0.18 0.15 0.46* 0.25 0.14 -0.45*

Step length non paretic side
Return Stand

-0.01 0.03 0.19 0.31 0.27 0.43* 0.20 0.15 -0.43*

Cadence Go Stand 0.21 -0.07 -0.11 -0.07 -0.08 0.01 0.30 0.27 -0.15

Cadence Return Stand 0.42* -0.08 -0.14 -0.07 -0.06 -0.04 0.31 0.24 -0.18

% SSP paretic side Turn Stand -0.20 -0.27 0.40* 0.11 0.03 0.36 0.22 0.38* -0.40*

%SP non paretic side Turn
Stand

-0.18 -0.28 0.39* 0.13 0.05 0.40* 0.25 0.43* -0.36

MRC: Medical Research Council scale. BBS: Berg Balance Scale. ABC: Activities-specific Balance Confidence.

* significant correlation at p<0.05.

doi:10.1371/journal.pone.0129821.t004
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None of the kinematic parameters studied explained Oriented gait and Turn performance.
This corroborates with a previous study which highlighted that kinematic parameters during
conventional gait analysis were not predictive of the time to perform the entire TUG test [14].
Since increased gait speed is associated with increased hip extension and ankle dorsiflexion in
patients with stroke [15, 48], it could be expected that TUG performance would be related to
these parameters. The lack of association could be because of the short distance involved in the
test. During the Go and Return sub-tasks, participants likely accelerated then decelerated before
beginning the Turn task or the return to sit. So that these kinematic parameters are continuously
adjusted during these sub-tasks and the net result is an absence of modification of the peaks.

Surprisingly, no correlations were found between MRC scores and the biomechanical pa-
rameters which were related to the Go and Return sub-tasks. Previous studies have shown that
the best predictors of gait performance are strength of the paretic lower limb and balance in
stroke patients [49]. Another study in our group showed correlations between time to perform
the entire TUG and strength of the paretic limb [14]. This difference of results could be ex-
plained by the fact that in the present study we made correlation between the sum of the MRC
score of the paretic lower limb and the performance at Oriented gait and Turn sub-tasks
whereas in the previous one we performed distinct correlation between each muscle tested and
the total TUG performance measured with a stopwatch. MAS score was related only to cadence
during Return sub-task in Stand.

Percentage SSP appears to play an important role in the Turn sub-task although the limb
(paretic or non-paretic) differed according to the condition. This corroboratesa previous study
in our group showing that paretic %SSP assessed during conventional gait analysis is predictive
of total TUG performance time in stroke patients [14]. In stroke patients, Ng and Hui-Chan
(2005) found also a correlation between TUG performance and non-paretic stance time, and
DeBujanda et al (2003) found a correlation with single support symmetry [3, 50]. Several stud-
ies have also shown a strong relationship between gait speed and single support time on the pa-
retic limb in stroke patients [51, 52]. Gait speed being related to the time to perform the turn, it
suggests that paretic limb loading and balance control on this limb are challenging during this
sub-task. Moreover, turning requires a change of direction with deceleration of forward mo-
tion, rotation of the body and acceleration in a new direction [53]. It is a complex task for
stroke patients who frequently evoke lacking balance during turning when they are asked
about the circumstances of a fall [54]. Percentage of SSP on the paretic side is known to be
closely linked with stability in stroke patients [51, 52]. Of all the clinical tests, the BBS score
was related to the most biomechanical parameters in all the sub-tasks of the test. The correla-
tion with %SP on the non-paretic side during the Turn in the standardized condition is proba-
bly due to the fact that, when one limb is in SSP the other is in SP,This indicates that the Turn
is a good measure of balance capacity In the spontaneous condition, the participant could turn
either towards the paretic or the non-paretic side which explain the lack of significance of %SP
during the Turn. The MRC score was correlated with the biomechanical parameters which
were related to the Turn. This suggests that more strength is required for this sub-task than for
the walking sub-tasks. The stand-up and sit-down sub-tasks of the TUG may be affected by
lower limb strength but were not assessed in this study.

To summarize, these results indicate that the walking sub-tasks of the TUG test which re-
quire a forward progression of the body are mainly affected by step length and cadence, while
the turning sub-task of the TUG requires balance control which is related to the percentage of
the gait cycle spent in stance phase. However, the percentage variance explained was high for
the Go and Return sub-tasks (between 82% and 95%) and moderate for the Turn (27% and
56%) in both conditions. Both conditions (Spont and Stand) lead to the same explanatory pa-
rameters for walking sub-tasks (step length and cadence). In contrast, the Stand condition

Performance and Biomechanical Parameters of TUG in Stroke Patients

PLOS ONE | DOI:10.1371/journal.pone.0129821 June 19, 2015 10 / 14



79

Chapitre 1: ContexteChapitre 3: Partie expérimentale

better explained the variance for the Turn sub-task, we therefore suggest that the standardized
condition is more pertinent for the biomechanical assessment of Oriented gait and Turn sub-
tasks of TUG performance. Confidence in carrying out activities (ABC score) was surprisingly
not related to any of the biomechanical explanatory parameters. Oriented gait and Turn sub-
tasks of TUG test appears thus more related to a global fear of falling than confidence to carry
out specific activities.

Limits
The sample of participants in the present study was a little younger (54.2±12.2 years) than
other studies in the literature. However, it is unlikely that this would have influenced the results
since Oriented gait and Turn sub-tasks of TUG performance was similar to that reported by
Faria et al who found a time of 10.36s for the walking sub-tasks (summed) and 3.18s for the
turning sub-task in patients with chronic stroke (mean age 59.12±2.28y) [29]. Similarly Botolf-
sen et al reported a time of 3.8 to 4.4 seconds for the walking sub-task and 3.8 to 4.2 seconds
for the turning sub-task in older people with impaired mobility [55]. The mean score of BBS in
our population (50.5±2.3) indicates good balance capacity [56], therefore the results of this
study should be only be generalized to similar patients.

The differences found between the Spont and Stand conditions may be due to the fact that
the Spont condition was always performed first. However, for the spontaneous condition to re-
flect spontaneous performance, it was essential for it to be carried out first. A similar methodol-
ogy was used in another study [22].

Conclusion
This study investigated spatiotemporal and kinematic parameters in Oriented gait and Turn
sub-tasks of the TUG test in stroke patients. The results showed that step length and cadence
explained most of the variance in the performance of the walking sub-tasks and, %SSP and %
SP explained the turning sub-task. Balance capacity (assessed with BBS) and fear of falling
were associated with the biomechanical parameters which explained performance in both the
walking and the turning sub-tasks whereas spasticity, strength, sensation and proprioception
were not, or only very slightly, related. It can thus be concluded that dynamic stability is the
main capacity required to perform the walking and turning sub-tasks of the TUG. The results
of the Spont and Stand conditions differed slightly, probably due to the different directions of
the turn. More variance was explained in the standardized condition and therefore we suggest
that this condition should be used to evaluate Oriented gait and Turn sub-tasks of TUG perfor-
mance. This study demonstrated that biomechanical analysis of the Oriented gait and Turn
sub-tasks of the TUG is useful to increase understanding of gait abnormalities. This is relevant
for rehabilitation since the tasks evaluated by the TUG are highly functional and are carried
out frequently throughout the day, however are rarely assessed using accurate tools. This analy-
sis assesses balance capacity during gait, either for monitoring purposes or to evaluate the ef-
fects of treatment (rehabilitation, pharmaceutical or surgical). Moreover, the results of this
assessment can be used to optimize rehabilitation, for example, to improve performance during
the gait sub-tasks, rehabilitation should focus on increasing cadence and step length, whereas
to improve the performance on the turning sub-task, balance capacity and particularly single
support phase on the paretic side should be specifically trained.
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Les résultats de cette étude indiquaient que la longueur de pas et la cadence expliquaient les 
tâches de marche orientée et que le pourcentage de phase de simple appui du côté parétique (paramètre 
de stabilité) et de phase oscillante du côté non-parétique expliquait la tâche du demi-tour. Ces résultats 
répondaient partiellement à l’hypothèse initiale puisque le pourcentage de phase de simple appui du 
côté parétique était bien prédictif du score chronométrique de la phase du demi-tour, en revanche le 
pic d’extension de hanche n’expliquait la performance des patients dans  aucune des phases du TUG.

Les résultats de cette étude montraient également que les scores au test d’équilibre de la Berg 
Balance Scale étaient associés aux paramètres explicatifs des phases de marche et de demi-tour. 
Ceci suggère que les capacités d’équilibration constituent une composante pertinente à analyser lors 
d’activités locomotrices diverses.

Une standardisation de la condition pour une analyse instrumentée du TUG semble devoir être 
privilégiée pour de futures études ayant pour objet de comparer plusieurs populations. Ainsi, la condition 
standardisée (avec positionnement initial et consigne imposés) permettait une meilleure explication de la 
variance que la condition spontanée. 

Ces premiers résultats d’une analyse instrumentée du TUG chez des patients hémiparétiques 
mettent en évidence l’intérêt d’analyser biomécaniquement différentes tâches locomotrices, au-delà de 
l’analyse de la marche stabilisée en ligne droite sans cible à atteindre. Ainsi, selon la nature de la tâche 
locomotrice (marche orientée ou demi-tour), le contrôle locomoteur différait pour une même population. 

Toutefois, les résultats de cette étude soulèvent de nouvelles questions : 

Une même tâche locomotrice est-elle contrôlée par les mêmes paramètres pour deux populations 
différentes ? En d’autres termes, l’organisation des patients hémiparétiques et des sujets sains est-elle 
la même ?

De quelle manière les capacités d’équilibration lors d’activités locomotrices variées interfèrent-
elles avec la performance lors de la tâche ? 

La seconde étude a donc eu pour but de comparer les paramètres spatio-temporels et de 
la cinématique articulaire lors des tâches de marche orientée et de demi-tour du TUG des patients 
hémiparétiques avec des sujets sains. La troisième étude avait pour objectif d’analyser l’équilibre des 
patients hémiparétiques lors de la réalisation du TUG et le lien avec la performance.
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Etude 2: Caractérisation de l’organisation des patients hémiparétiques par rapport à des 
sujets sains, à partir de paramètres cinématiques lors des phases de marche orientée et de 
demi-tour du TUG.

La première étude décrit la cinématique locomotrice de sujets hémiparétiques lors des phases 
de marche orientée et de demi-tour du Timed Up and Go. Ces paramètres, n’ayant jamais été décrits 
auparavant, permettent une approche quantifiée de tâches locomotrices plus fréquemment effectuées 
au quotidien qu’une marche stabilisée en ligne droite. Ces données s’avèrent intéressantes, mais il 
apparaissait essentiel de les comparer à celles d’une population saine. Ceci dans le but d’évaluer l’écart 
à la norme de ces paramètres chez les patients hémiparétiques et de déterminer si l’organisation de 
ces patients est similaire ou différente de celle des sujets sains. En effet, d’autres études ont mis en 
évidence des différences concernant la cinématique de tronc et la coordination temporelle entre des 
patients hémiparétiques et des sujets sains au cours de tâches quotidiennes telles que le assis debout 
(sit to stand) et le lever et marche (sit to walk) (Galli et al., 2008), (Frykberg et al., 2009). 

Les objectifs de cette étude étaient (1) de comparer les paramètres spatio-temporels et de 
la cinématique articulaire entre des patients hémiparétiques et des sujets sains lors des phases de 
marche et de demi-tour du TUG et (2) de déterminer si les paramètres explicatifs de la performance 
chronométrique de chacune des phases étudiées différaient entre les patients hémiparétiques et les 
sujets sains. Nous avons émis l’hypothèse qu’au cours des phases du TUG, les paramètres spatio-
temporels et de la cinématique articulaire seraient diminués chez les patients hémiparétiques, en se 
basant sur la littérature décrivant la marche en ligne droite (Kerrigan et al., 1991), (Olney and Richards, 
1996), (Perry, 1992), (von Schroeder et al., 1995) et que les paramètres explicatifs des phases du TUG 
différeraient entre les patients hémiparétiques et les sujets sains.

Cette étude comparait vingt-neuf patients hémiparétiques et vingt-cinq sujets sains effectuant 
le TUG en condition standardisée  ; cette condition étant recommandée au regard des résultats de 
l’étude 1.
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A B S T R A C T

Understanding locomotor behavior is important to guide rehabilitation after stroke. This study compared
lower-limb kinematics during the walking and turning sub-tasks of the Timed Up and Go (TUG) test in
stroke patients and healthy subjects. We also determined the parameters which explain TUG sub-task
performance time in healthy subjects. Biomechanical parameters were recorded during the TUG in
standardized conditions in 25 healthy individuals and 29 patients with chronic stroke using a 3D motion-
analysis system. Parameters were compared between groups and a stepwise regression was used to
indicate parameters which explained performance time in the healthy subjects. The percentage
difference in step length between the last and first steps was calculated, during walking sub-tasks for
each group.
Speed, cadence, step length, percentage paretic single support phase, percentage non-paretic swing

phase, peak hip extension, knee flexion and ankle dorsiflexion were significantly reduced in the Stroke
group compared to the Healthy group (p < 0.05). In the Healthy group, step length and cadence explained
91% of variance for Go and 86% for Return (walking sub-tasks), and none of the parameters explained the
Turn. Previous study in patients with stroke showed that the same parameters explained the variance
during the walking sub-tasks and balance-related parameters explained the Turn. The present results
showed that step length was differently modulated in each group. Thus the locomotor behavior of
patients with stroke during obstacle circumvention is quite specific in light of the results obtained in
healthy subjects.

ã 2016 Elsevier B.V. All rights reserved.

1. Introduction

The gold standard technique for gait analysis in stroke patients
involves recording straight-line gait using a three dimension
motion analysis system [1]. This does not reflect locomotion during
daily life. Previous studies of gait have shown that different motor
strategies are used by healthy subjects, depending on the
environment [2,3]. These include altering gait speed without
altering course to avoid collision [4], modifying step length prior to

stepping onto an obstacle [5], changing step-width [2] and
reducing gait speed during obstacle circumvention [3].

The Timed Up and Go test (TUG) is a clinical test of functional
gait routinely used to assess locomotion in stroke patients [6,7].
TUG performance is slower following stroke [7,8], however, little is
known regarding the motor strategies used by patients. Bio-
mechanical analysis of each sub-task has thus been recommended
[9,10]. A recent study determined the spatiotemporal and
kinematic parameters that were most related to the walking
and turning sub-tasks of TUG performance in patients with stroke
[11]. However, this study did not include healthy control subjects.
Other studies have shown that trunk and ankle kinematics, vertical
kinetics and temporal coordination are altered during sit to stand
and sit to walk tasks following stroke [12–14]. A difference in the
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Hôpital Raymond Poincaré, 104 Bld Raymond Poincaré, 92380 Garches, France.
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head anticipation distance (the distance between the real turn
point and the point where the head started to turn) during turning
in the TUG has also been found between stroke and healthy
subjects [15]. However, data are lacking regarding locomotor
adjustments during oriented gait and obstacle circumvention in
patients with stroke compared with healthy subjects. This is
important because sensory-motor function following stroke alters
the biomechanics of gait [16–18]. Moreover such information
would guide rehabilitation to improve the quality of gait.

The first aim of this study was to compare spatio-temporal and
kinematic parameters during the walking and turning sub-tasks of
the TUG between patients with stroke and healthy subjects. We
hypothesized that gait parameters during the TUG would be lower
in patients with stroke compared to healthy subjects since it is
known that spatio-temporal and kinematic parameters are
reduced in straight-line gait following stroke [19–22]. The second
aim of this study was to determine the parameters which explain
TUG sub-task performance time in healthy subjects. We hypothe-
sized that step length and cadence would be particularly related to
the performance time since they are related to the speed.

2. Method

2.1. Subjects

Twenty nine patients with chronic stroke-related hemiparesis
followed in our rehabilitation unit (mean age 54.2 � 12.2 years),
and twenty five age-matched healthy subjects (mean age
51.6 � 8.7 years) were included in this study. Calculation of the
effect size and the statistical power (95%) using previously
published data [7,8] showed that the sample size was sufficient
to support our results [23]. To be included, patients had to have had
a single stroke, be over 18 years old and able to perform several
TUG tests without assistive devices. The healthy subjects had no
history of neurological or orthopedic disorders. Patients were
excluded if they were medically unstable or if they had other
neurological or orthopedic disorders that might interfere with test
performance. Subject characteristics are shown in Table 1. This
study was conducted in accordance with the ethical codes of the
World Medical Association. All subjects provided written informed
consent. The local ethics committee approved this study.

2.2. Clinical assessment

Patients with stroke underwent a clinical examination which
included sensation and proprioception using the Nottingham
Sensory Assessment, spasticity (quadriceps, rectus femoris,
hamstring and triceps surae muscles) using the Modified Ashworth
Scale and strength (hip, knee and ankle flexor and extensor
muscles) using the Medical Research Council scale.

2.3. Experimental procedure

Each subject performed 3 trials of the TUG test in standardized
conditions, previously published [11]. Participants were asked to
stand up, walk 3 m, turn around a cone, return to the stool and sit

down. Patients with stroke were instructed to turn towards their
paretic side and healthy subjects towards their non-dominant side
since the direction influences performance [24,11]. A previous
study showed that standardized conditions reduce variability and
allow easier interpretation of results [12]. No instruction was given
concerning the side of the first step. The test was carried out at the
subject’s self-selected speed without orthoses or walking aids.

A motion analysis system with 8 optoelectronic cameras
(Motion Analysis Corporation, Santa Rosa, CA, USA, sampling
frequency 100 Hz) recorded the displacement of thirty-four
reflective markers positioned on anatomical land marks according
to the Helen Hayes protocol, as well as on the greater trochanter
and the anterior superior iliac spine [25,26,11]. The signal was
filtered using a low-pass Butterworth filter with a cut-off
frequency of 6 Hz [27]. Anatomical frames defined from the
reference standing position were used for the analysis of spatio-
temporal and kinematic parameters. A MOtion Kinematics and
Kinetics Analyser (MOKKA, Biomechanical ToolKit) was used to
define the phases of the gait cycle (according to Perry [19]) and
TUG tasks [28]. The three sub-tasks of the TUG were defined as in
Bonnyaud et al. [11]: “Go” (first walking phase from the stool to the
cone), “Turn” and “Return” (second walking phase back towards
the stool). The same experimenter carried out all the analyses to
ensure reliability [1].

The same parameters as in Bonnyaud et al. [11] were analyzed
with Matlab (R14, The MathWorks Inc., Natick, MA, USA): (i) TUG
sub-task performance defined by the time taken to perform each
sub-task (Go, Turn and Return), (ii) spatiotemporal parameters:
cadence, width, step length and percentage of single support phase
(%SSP) and swing phase (%SP) for each limb, during the three sub-
tasks, and (iii) kinematic parameters: peak flexion and extension of
the hip, knee and ankle and maximal ankle dorsiflexion during
swing phase, for each limb, during the three sub-tasks.

Our previous study showed that step length was the main
parameter which explained performance during the walking sub-
tasks preceding turn of the TUG in the Stroke group [11].
Modulation of step length provides an indication of how subjects
prepare for a turn. It has been shown that reducing step length is a
way to maintain stability [29]. We thus analysed the modulation of
step-length during Go and the Return in both groups by calculating
the percentage difference in length between the last and first steps,
for each side, as follows:

Percentage difference step length

¼ last step length � f irst step length
f irst step length

� 100

2.4. Statistical analysis

We calculated the means and standard deviations of each
parameter, for each subject during each sub-task. Data were
normally distributed (Shapiro Wilk test). Independent t-tests were
used to compare parameters between the Stroke and Healthy
groups (the paretic limb of patients was compared with the weaker
limb of healthy subjects and the non-paretic limb of patients was
compared with the stronger limb of healthy subjects). Effect sizes

Table 1
Subject characteristics.

Age (years) Height (m) Weight (kg) Gender (m/w) Time since stroke (years) Hemiparetic side

Stroke group
(n = 29)

54.2 � 12.2 1.68 � 0.09 73.2 � 16.2 18m/11w 7.9 � 5.7 12 right/17 left

Healthy group
(n = 25)

51.6 � 8.7 1.67 � 0.1 65.6 � 14.7 11m/14w – –

There were no differences in characteristics between groups (Student, p > 0.05). M: men; w: women.

C. Bonnyaud et al. / Gait & Posture 49 (2016) 258–263 259
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were calculated as the difference between the means of the stroke
and healthy groups, divided by the mean standard deviation [30].
Pearson’s correlations were carried out between biomechanical
parameters and TUG performance for the corresponding sub-task
(level of significance p < 0.05). The strength of the correlations
were analysed according to Domholdt (strong: >0.70, moderately:
[0.50–0.69], and weak: �0.49) [33]. Then, the biomechanical
parameters which were significantly correlated were used in a
stepwise multiple regression analysis with forward selection for
each sub-task, since the number of variables included in the model
has to be small [31]. The stepwise regression was performed using
data from the Healthy group to select the parameters which best
explained TUG performance time for each sub-task. To avoid
redundant variables, if the same parameter was significantly
correlated with performance time in both lower limbs, we
compared the limbs. If there was no difference, the mean of the
limbs was entered in the regression model [32]. Similarly, gait
speed was not considered for regressions since it appears
redundant with cadence and step length. Finally, independent t-
tests were used to compare the percentage difference in step
length between patients and healthy subjects on both sides
(p < 0.05).

3. Results

3.1. Comparison of the stroke and healthy groups

Spasticity and strength scores of patients are presented in
Table 2. No patients had a complete loss of sensation, 52% had
hypoesthesia and 48% had normal sensation,17% had complete loss
of proprioception, 38% had some loss of proprioception and 45%
had normal proprioception.

TUG performance time and biomechanical parameters are
shown in Table 3. Performance time of the Stroke group was
significantly longer for each sub-task (p < 0.05). Several param-
eters were consistently altered in all sub-tasks in this group.
Compared to the Healthy group, the values for speed, cadence, step
length on both sides, percentage paretic single support phase and
percentage non-paretic swing phase were reduced in the Stroke
group for all sub-tasks (p < 0.05). Similarly, peak hip extension,
knee flexion and ankle dorsiflexion were lower in the paretic limbs
of the Stroke group for all sub-tasks (p < 0.05). No differences were
found for peak knee extension and ankle plantarflexion on paretic
side (p > 0.05). On non-paretic limbs, peak knee flexion of the
Stroke group was higher and peak knee extension was lower, for all
sub-tasks (p < 0.05). No differences were found for peak hip flexion
on non-paretic side (p > 0.05).

Other parameters were differently altered in the Stroke group in
comparison with Healthy group depending on the sub-task. This

was the case during Turn where step width was smaller (larger
during both walking sub-tasks), % paretic SP and % non-paretic SSP
were smaller, peak hip extension and ankle plantarflexion on the
non-paretic side were higher and peak ankle dorsiflexion on the
non-paretic side was lower in the Stroke group, in comparison with
Healthy group (p < 0.05). These parameters did not differ from the
Healthy group during Go or Return (except peak paretic ankle
dorsiflexion). Specific modifications concerned the Go sub-task
such as peak paretic hip flexion which was lower and peak non-
paretic ankle dorsiflexion which was higher in the Stroke group
(p > 0.05); peak paretic hip flexion was not different during Turn or
Return (p > 0.05).

The effect sizes of all the significant between-group compar-
isons were large (>0.8) except for peak hip flexion on the paretic
side (medium effect size) and peak knee flexion, peak ankle
dorsiflexion (medium effect size) and plantarflexion (small effect
size) on the non-paretic side [30].

3.2. Parameters which explained performance time in healthy subjects

Significant correlations between biomechanical parameters
and TUG performance during Go, Turn and Return of Healthy group
are presented in Table 3. The results showed that cadence, step
length, %SP and %SSP were significantly strongly or moderately
correlated (p < 0.05) with performance time, for both lower limbs
for the walking sub-tasks with no significant differences between
sides (p > 0.05). The means of these parameters were thus entered
in the regression model. Some kinematic parameters were weakly
correlated during these walking sub-tasks. No parameters were
correlated during the Turn.

The parameters selected by the stepwise regression to explain
performance time for the Go sub-task in the healthy subjects were
step length and cadence (91% of the variance). The corresponding
regression equation was: TUG performance time Go Healthy = 6.61
–0.03 Step length � 0.02 Cadence. For Turn, no variables were
correlated with TUG performance time. For Return, step length and
cadence explained 86% of the variance. The corresponding
regression equation was: TUG performance time Go Healthy = 9.24
–0.06 Step length �0.03 Cadence.

3.3. Analysis of the percentage difference in step length

The percentage differences in step length between the last and
first steps of Go and Return in the Stroke and Healthy groups are
presented in Fig. 1.

For Go, the mean difference was �3.5% in the right limb and
�7.8% in the left limb of the Healthy group and, �14.5% in the
paretic limb and +12.5% in the non-paretic limb of the Stroke
group. For Return, the mean difference was �6.3% in the right limb

Table 2
Number of patients with stroke as a function of spasticity and strength scores.

Score 0 1 1+ 2 3 4 5 Total number of patients with spasticity or weakness for each muscle
Muscle

Spasticity Q 11 8 1 5 4 0 – 18
Spasticity H 24 4 0 1 0 0 – 5
Spasticity TS 14 5 0 8 2 0 – 15
Claw toe 11 18 – – – – – 18
MRC hip flexors 0 0 – 0 4 22 3 26
MRC hip extensors 0 0 – 9 5 15 0 29
MRC knee flexors 0 1 – 5 13 10 0 29
MRC knee extensors 0 0 – 0 0 10 19 10
MRC ankle dorsiflexors 3 1 – 0 9 14 2 27
MRC ankle plantarflexors 4 8 – 12 2 1 2 27

Q quadriceps, H hamstring TS triceps surae. Spasticity was assessed with the modified Ashworth scale (0–4). Strength was assessed with Medical Research Council (MRC) scale
(0–5). The total number of patients was 29.

260 C. Bonnyaud et al. / Gait & Posture 49 (2016) 258–263



88

Chapitre 1: ContexteChapitre 3: Partie expérimentale

and �16.8% in the left limb in the Healthy group and, �23.7% in the
paretic limb and +2.3% in the non-paretic limb of the Stroke group.
These differences were significant between groups (p < 0.05).

4. Discussion

4.1. Biomechanical parameters: comparison between patients with
stroke and healthy subjects

As hypothesized, speed, cadence, step length on both sides,
percentage of single support phase on the paretic side, peak hip
extension, knee flexion and ankle dorsiflexion on the paretic side
were significantly reduced in the Stroke group (compared to the
Healthy group) for all three TUG sub-tasks. This is not surprising
since most of these parameters depend on gait speed which was
reduced [34,35]. The loss of peak paretic knee flexion likely relates
to hip flexor weakness, quadriceps spasticity and reduced
propulsion due to plantarflexor weakness [21]. The loss of peak
paretic ankle dorsiflexion is likely due to dorsiflexor weakness and/
or triceps surae spasticity [36] and the loss of peak hip extension to
spasticity of the hip flexors. These findings corroborate with
previous studies of straight-line gait [20–22].

Interestingly, peak knee flexion during the three sub-tasks, and
peak hip extension and peak ankle plantarflexion during the Turn,

were greater in the non-paretic side of the Stroke group than in the
Healthy group. These may be adaptations to compensate for
deficits on the paretic side. Hutin et al. found greater non-paretic
hip and knee flexion in stroke patients compared to healthy
subjects during straight-line gait at the same speed [37]. This
suggests that some kinematic adaptations in the non-paretic
lower-limb are task-independent. The greater values on the non-
paretic side could also be due to the fact that the non-paretic limb
was outside during the Turn and thus covered a greater distance
than the inside limb. However the parameters of the outside limb
of the patients with stroke were greater than the outside limb of
healthy subjects. Increasing non-paretic peak hip extension and
peak ankle plantarflexion specifically during the Turn may be a
strategy to help patients with stroke to optimize their perfor-
mance.

Some kinematic adaptations were specific to the stroke group,
particularly during the Turn. Percentage paretic SP, percentage
non-paretic SSP and step width were only decreased during the
Turn in the Stroke group. The decreased percentage paretic SP is
likely due to the complexity of turning. Similarly, the steps of the
Stroke group were shorter and narrower during the Turn, probably
out of caution. However, step width during the Turn should be
interpreted with caution since turning induces a change of
direction which may confound its interpretation.

Table 3
Spatiotemporal and kinematic parameters (Mean(sd)) during the Go, Turn and Return sub-tasks of the TUG for both groups.

Go Turn Return

Stroke group Healthy group d Stroke group Healthy group d Stroke group Healthy group d

Performance TUG (time in sec) 4.6 (1.0) 2.4 (0.3)a 2.9 3.2 (0.8) 1.4 (0.2)a 3 3.8 (0.9) 2.3 (0.4)a 2.1
% SP side 1 (%) 39.3 (3.3) 39.1 (1.7)b

r = �0.63
– 36.5 (4.1) 40.3 (2.5)a 1.1 38.6 (2.9) 38.6 (2.2)b

r = �0.71
–

% SP side 2 (%) 28.6 (3.6) 38.5(1.4)a,b

r = �0.52
3.6 26.8 (4.5) 36.7 (2.0)a 2.8 29.3 (3.5) 38.1 (2.0)a,b

r = �0.50
3

% SSP side 1 (%) 28.4 (3.9) 39.2 (1.7)a,b

r = �0.67
3.6 26.8 (4.3) 36.2 (2.7)a 2.6 29.2 (3.7) 38.5 (1.9)a,b

r = �0.63
3.1

% SSP side 2 (%) 39.9 (3.36) 39.1 (1.7)b

r = �0.78
– 36.5 (4.3) 39.9 (2.4)a 0.9 39.1 (2.8) 38.4 (1.9) –

Step length side 1 (cm) 45.3 (8.1) 64.0 (6.2)a,b

r = �0.77
2.6 27.7 (9.8) 42.8 (6.3)a 1.8 43.9 (7.1) 61.4 (5.3)a,b

r = �0.66
2.8

Step length side 2 (cm) 42.3 (8.9) 63.9 (7.4)a,b

r = �0.77
2.6 31.7 (9.2) 42.7 (9.7)a 1.1 42.7 (8.8) 59.3 (7.4)a,b

r = �0.72
2

Width (cm) 17.1 (5.4) 11.2 (3.1)a 1.3 22.3 (4.7) 33.0 (6.5)a 1.9 15.9 (4.8) 10.2 (2.9)a 1.4
Speed (s) 41.0 (8.5) 72.3 (8.5)a 3.7 28.5 (6.4) 45.7 (9.0)a 2.2 40.2 (7.3) 65.8 (7.6)a 3.4
Cadence (pas/min) 93.5 (11.1) 109.7 (7.9)a,b

r = �0.56
1.7 92.6 (11.8) 105.7 (8.0)a 1.3 92.9 (10.5) 106.9 (8.3)a,b

r = �0.57
1.5

Peak hip flexion side 1 (�) 40.6 (10.6) 47.1 (10.7)a,b

r = �0.46
0.6 35.9 (9.6) 37.9 (6.9) – 36.4 (9.6) 39.3 (6.0) –

Peak hip flexion side 2 (�) 47.1 (8.4) 51.3 (10.6)b

r = �0.48
– 43.8 (8.2) 43.0 (6.18) – 44.8 (8.1) 41.3 (5.9) –

Peak hip extension side 1 (�) �2.8 (8.5) 5.6 (6.4)a 1.1 �5.5 (9.3) 1.5 (5.8)a 0.9 �1.1 (8.3) 6.1 (6.3)a 0.9
Peak hip extension side 2 (�) 4.4 (8.8) 4.9 (7.3) – 3.0 (8.6) �2.6 (8.7)a 0.6 5.6 (8.6) 4.6 (7.5) –

Peak knee flexion side 1 (�) 44.1 (8.6) 66.5 (3.6)a 3.3 40.1 (8.4) 67.9 (3.8)a 4.3 44.3 (10.3) 65.5 (3.7)a,b

r = �0.44
2.7

Peak knee flexion side 2 (�) 70.5 (5.0) 68.0 (3.3)a 0.6 69.4 (5.6) 66.5 (4.3)a 0.6 69.9 (5.1) 66.4 (2.9)a 0.8
Peak knee extension side 1 (�) �2.0 (7.1) 0.9 (3.4) – �2.6 (7.4) 0.4 (3.6) – �1.1 (6.3) 1.2 (3.0) –

Peak knee extension side 2 (�) �5.7 (5.2) 0.9 (3.7)a 1.5 �5.1 (5.1) �0.7 (3.7)a 0.9 �5.1 (5.5) 0.9 (3.3)a 1.3
Peak ankle dorsiflexion swing phase side 1 (�) 1.3 (7.3) 6.9 (2.5)a,b

r = �0.43
1 0.2 (8.7) 7.3 (2.8)a 1.1 0.6 (7.4) 5.9 (2.8)a 0.9

Peak ankle dorsiflexion swing phase side 2 (�) 16.3 (6.2) 11.1 (7.2)a 0.7 13.8 (6.1) 17.8 (7.7)a 0.6 15.0 (6.9) 13.4 (7.7) –

Peak ankle plantarflexion side 1 (�) 10.34 (7.8) 12.4 (6.5) – 9.8 (9.5) 11.3 (6.5) – 10.8 (8.6) 12.3 (5.5)b

r = �0.49
–

Peak ankle plantarflexion side 2 (�) 11.2 (6.1) 9.8 (7.1) – 9.9 (5.6) 6.1 (6.2)a 0.2 10.7 (6.2) 12.4 (7.1) –

%SSP: percentage of single support phase.
%SP: percentage of swing phase.
Sign—means a reduction in the range of active motion (flexion or extension, depending on the parameter).
Side 1 corresponds to the paretic side for hemiparetic patients and to the right side for healthy subjects.
d Cohen’s effect size.
aSignificant difference between the hemiparetic patients and healthy subjects (p < 0.05).
bSignificant correlation (all negative; p < 0.05) between the variable and TUG performance (time) for the sub-task concerned in healthy subjects, assessed with Pearson
correlation.
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4.2. Parameters which explained performance time

We compared the results of the stepwise regression for the
Healthy group with our previous results in the Stroke group [11].
During the walking sub-tasks (Go and Return), similar parameters
(step length and cadence, and % non-paretic SP for the Stroke group
during Return), explained performance in both groups, thus
refuting our second hypothesis. It is interesting to note that no
kinematic parameters explained performance time during the
walking sub-tasks in either group although several kinematic
parameters were altered in the stroke patients compared to the
healthy subjects. These results suggest that the modulation of step
length is the result of multi-level lower-limb adaptations in both
groups. Adaptations of step length reflect locomotor behavior
before a turn. Step length in the Healthy group decreased before
the turns (Turn sub-task and turning prior to sitting down), as it did
on the paretic side in the Stroke group (to a greater extent than in
the Healthy group), demonstrating anticipation. In contrast, step
length on the non-paretic side increased, possibly because of the
direction of the turn. This parameter highlighted specific behaviors
in individual patients. For example, two patients had a perfor-
mance time of 4.4 s, one of whom decreased his percentage step
length six times more than the other. Sensory-motor deficits in
stroke patients and the direction of turn towards the paretic side
could explain the different modulation in the paretic and non-
paretic side. Caution must be taken in the interpretation of this
parameter since the accelerations and decelerations involved in
the TUG, as well as differences in the side which initiated gait,
induce variability.

Different parameters explained performance time during the
Turn in each group. Our previous results in the Stroke group

showed that 56% of the variance in TUG performance time during
Turn was explained by percentage paretic single support phase and
percentage non-paretic swing phase, which are balance related
parameters [11,38,39]. Conversely, no variables were correlated
with Turn performance in the Healthy group although several
spatio-temporal and kinematic parameters were modified, sug-
gesting that control of the turn is based on simultaneous multi-
level spatio-temporal and kinematic changes. Control of this
complex sub-task was thus differently modulated between the
groups. This complements the study by Hollands et al. who found a
longer turn duration during the TUG for the patients with stroke,
with a difference in the head anticipation distance but no
differences in axial coordination between groups [15]. Obstacle
circumvention during gait is complex, requiring the perception and
integration of sensory inputs to adapt gait appropriately [40].
Patients with stroke have difficulty taking into account sensory
information and generating appropriate feedback for compensa-
tory adjustments [41]. This could explain the difference in
controlled parameters between Stroke and Healthy groups during
the turn.

The patients included had a relatively good level of recovery
since they could perform the TUG test without walking aids or
orthoses. The results are therefore applicable only to similar
patients.

5. Conclusion

This study is the first to compare biomechanical parameters
during the TUG between patients with stroke and healthy subjects.
The values of most biomechanical parameters were reduced in the
patients with stroke compared to the healthy subjects, although
the values of some parameters on the non-paretic side were
increased in compensation. This study also determined the
parameters that best explained performance time of TUG sub-
tasks in healthy subjects. Performance time of the walking sub-
tasks was explained by step length and cadence in Healthy group,
which is similar to previous reports in patients with stroke.
However, they were differently modulated, probably because of
the sensory-motor deficits of the patients with stroke. No
parameter was specifically related to Turn performance time in
the Healthy group, suggesting that control of the turn is based on
simultaneous multi-level changes, which contrast with the
balance-related parameters, previously found to explain Turn
performance time in the Stroke group. This study suggests that
balance rehabilitation is particularly important for stroke patients
to improve stability and performance during locomotor tasks
involving turns.
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La diminution de la plupart des paramètres cinématiques au cours des phases du TUG chez 
les patients hémiparétiques par rapport aux sujets sains confirmait notre hypothèse. Les résultats 
mettaient également en évidence une supériorité de certains paramètres du côté non-parétique par 
rapport à ceux de sujets sains suggérant une possible compensation des déficits du côté parétique. 
Par ailleurs certains paramètres, relatifs à la stabilité, étaient spécifiquement modulés chez les patients 
hémiparétiques au cours de la phase du demi-tour, comparativement aux autres phases locomotrices 
du TUG. 

Notre seconde hypothèse était partiellement validée avec des paramètres explicatifs de la 
performance similaires, mais modulés différemment, chez les patients hémiparétiques et les sujets 
sains pour les phases de marche orientée (la longueur du pas et la cadence). En revanche, pour la 
phase du demi-tour, ces paramètres différaient entre les populations avec des paramètres relatifs à 
la stabilité pour les patients hémiparétiques et aucun paramètre explicatif pour les sujets sains. Ces 
résultats suggéraient une organisation différente et spécifique pour certaines phases du TUG et ont 
permis d’émettre l’hypothèse de l’existence d’une stratégie différente utilisée par les patients lors de la 
réalisation de ces tâches de navigation.

Ces résultats confirment l’hypothèse émise au décours de la première étude suggérant que les 
capacités d’équilibration des patients hémiparétiques lors d’activités locomotrices variées interfèrent 
avec la performance lors de la tâche. Ces éléments nous ont conduits à étudier spécifiquement des 
paramètres de stabilité au cours des phases locomotrices du TUG.
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Etude 3 : Caractérisation de l’organisation des patients hémiparétiques par rapport à des 
sujets sains, à partir de l’analyse de leurs déplacements du COM et du MFC, lors des phases de 
marche orientée et de demi-tour du TUG.

Les résultats des études 1 et 2 mettaient en évidence l’intérêt d’étudier les paramètres de stabilité 
chez les patients hémiparétiques lors de la réalisation du TUG. De plus, la littérature souligne l’implication 
des troubles de l’équilibre au cours des déplacements locomoteurs comme facteur explicatif des chutes 
des patients hémiparétiques (Nyberg and Gustafson, 1995), (Forster and Young, 1995), (Hyndman et 
al., 2002), (Belgen et al., 2006). Or les évaluations cliniques telles que la vitesse de marche, le score 
à la Berg Balance Scale (gold standard de l’évaluation de l’équilibre) et la performance au TUG ne 
permettent d’expliquer les chutes chez les patients hémiparétiques (Harris et al., 2005), (Persson et al., 
2011), (Barry et al., 2014). Il apparaissait donc indispensable d’évaluer les capacités d’équilibration des 
sujets hémiparétiques au cours d’activités locomotrices variées, rencontrées au quotidien, comme la 
marche orientée vers un but et le contournement d’un obstacle. Le contrôle du COM et du MFC sont 
admis comme le reflet du contrôle de la stabilité dynamique au cours du mouvement et du risque de 
trébuchement lors de la locomotion (Winter, 1991), (Tucker et al., 1998), (Barrett et al., 2010), (Hamacher 
et al., 2011). 

Les objectifs de cette étude étaient (1) d’analyser la stabilité au cours des phases de marche 
orientée et de demi-tour du TUG en étudiant les déplacements verticaux et médio-latéraux du COM 
et le MFC des patients hémiparétiques et de les comparer à ceux des sujets sains  ; (2) d’évaluer 
les relations entre les paramètres du COM et le MFC et, la performance chronométrique des 
phases correspondantes  ; et (3) de comparer les paramètres du COM et le MFC entre les patients 
hémiparétiques chuteurs et non-chuteurs. Nous avons émis les hypothèses que les déplacements 
du COM et le MFC seraient plus importants chez les patients hémiparétiques que chez les sujets 
sains et que ces paramètres seraient positivement corrélés à la performance chronométrique. Nous 
avons également émis l’hypothèse que les déplacements du COM seraient plus importants et le MFC 
serait réduit chez les patients hémiparétiques chuteurs, en comparaison aux non-chuteurs. Vingt-neuf 
patients hémiparétiques et vingt-cinq sujets sains effectuant le TUG en condition standardisée ont été 
analysés.
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Abstract

Background

The Timed Up and Go (TUG) test is often used to estimate risk of falls. Foot clearance and

displacement of the center of mass (COM), which are related to risk of tripping and dynamic

stability have never been evaluated during the TUG. Accurate assessment of these param-

eters using instrumented measurements would provide a comprehensive assessment of

risk of falls in hemiparetic patients. The aims of this study were to analyze correlations

between TUG performance time and displacement of the COM and foot clearance in

patients with stroke-related hemiparesis and healthy subjects during the walking and turn-

ing sub-tasks of the TUG and to compare these parameters between fallers and non-fallers.

Methods

29 hemiparetic patients and 25 healthy subjects underwent three-dimensional gait analysis

during the TUG test. COM and foot clearance were analyzed during the walking and turning

sub-tasks of the TUG.

Results

Lateral displacement of the COM was greater and faster during the walking sub-tasks and

vertical displacement of the COM was greater during the turn in the patients compared to

the healthy subjects (respectively p<0.01 and p<0.05). Paretic foot clearance was greater

during walking and displacement of the COM was slower during the turn in the patients

(p<0.01). COM displacement and velocity during the turn were correlated with TUG perfor-

mance in the patients, however, vertical COM displacement was not. These correlations

were significant in the healthy subjects. There were no differences between COM parame-

ters or foot clearance in fallers and non-fallers.
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Discussion and Conclusion

Hemiparetic patients are less stable than healthy subjects, but compensate with a cautious

gait to avoid tripping. Instrumented analysis of the TUG test appears relevant for the

assessment of dynamic stability in hemiparetic patients, providing more information than

straight-line gait.

Introduction
Stroke related impairments such as sensorimotor dysfunction affect balance and gait, increas-
ing the risk of falls. Falls are costly to the health system and are therefore an issue of public
health [1],[2]. Two thirds of falls reported by stroke patients living at home occur during gait-
related activities [1],[3]. Direction changes and turns are particularly hazardous [1],[4]. The
majority of patients relate falls to intrinsic factors such as impaired balance and foot dragging
[4],[2]. Dynamic stability (the ability to move without loss of balance) during gait related activ-
ities (walking, turning etc.) is essential for autonomy and should be assessed. Two biomechani-
cal parameters, the control of the center of mass (COM) and foot clearance, are considered
pertinent for the evaluation of dynamic stability and risk of tripping [4],[5],[6],[7].

The Timed Up and Go test (TUG) assesses gait related activities which involve dynamic sta-
bility. It involves rising from a chair, walking 3 meters, turning, walking back and sitting down
again. The task thus corresponds to activities regularly encountered in daily life [8]. This test is
widely used and is validated in stroke patients [9]. Performance is measured as the time to
carry out the test. It has been shown to be useful to identify fallers and non-fallers among older
subjects and stroke patients [10],[11],[12] however recent evidence suggests that its sensitivity
is low and its ability to predict falls is limited [11],[13],[14]. Balance capacity is the main pre-
dictor of falls and the relevance of the TUG for the assessment of balance and mobility has
been well demonstrated [12],[13]. However, performance time may not be a relevant criterion
for the accurate assessment of dynamic stability. Zampieri et al (2010) carried out an instru-
mented evaluation of the TUG in people with Parkinson’s disease [15]. They found no differ-
ence in TUG performance time between patients and healthy subjects but highlighted
differences in spatio-temporal parameters during the walking and turning sub-tasks using
accelerometers. This suggests that the evaluation of biomechanical parameters is particularly
pertinent to quantify dynamic stability and therefore to identify the main parameters related to
the risk of falls in each patient.

The displacement and velocity of the COM have been shown to be pertinent for the assess-
ment of dynamic stability during locomotion [6], [16]. The amplitude and lateral velocity of
the COM is increased during obstacle crossing in elderly individuals with loss of balance capac-
ity [17] as well as in subjects with brain injury [18],[19]. Vertical COM displacement is also
increased during gait in hemiparetic patients compared with healthy subjects [20]. Thus assess-
ment of COM displacement appears to be a useful parameter for the evaluation of dynamic sta-
bility in stroke patients.

Another useful parameter is minimum foot clearance (MFC), defined as the minimum ver-
tical distance between the lowest part of the foot of the swing leg and the walking surface dur-
ing the swing phase of the gait cycle [5]. Foot clearance is the result of shortening of the lower
limb due to a combination of hip, knee and ankle joint flexion. Foot trajectory is the primary
mode of error correction to allow stability during gait. Its analysis thus provides information
regarding dynamic stability while walking [21]. Patients with chronic stroke report lack of foot

Dynamic Stability during Oriented-Gait and Turn after Stroke
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clearance as being a cause of falls [4],[7]. However, Little et al (2014) recently investigated foot
clearance of the paretic limb in 16 stroke patients and found that it was increased compared to
healthy subjects [22]. Thus the assessment of both COM displacement and foot clearance
should provide an accurate assessment of dynamic stability, helping to increase understanding
of the main biomechanical determinants of TUG test performance and to define which param-
eters are particularly related to the risk of falls in patients with stroke [2],[4],[23]. Such a com-
prehensive assessment may identify potential fallers who could then be targeted in falls
prevention programs. Moreover, recent guidelines highlighted the importance of objectively
assessing dynamic stability in hemiparetic patients during gait and activities of daily living
[21],[24].

The aims of this study were (i) to analyse the vertical and mediolateral displacement of the
COM and foot clearance in hemiparetic patients, and to compare them with healthy subjects
during the walking and turning sub-tasks of the TUG test; (ii) to evaluate the relationship
between COM parameters and foot clearance and TUG performance during the same TUG
sub-tasks; and (iii) to compare COM and foot clearance parameters between fallers and non-
fallers with hemiparesis. We hypothesized that the lateral and vertical displacement of the
COM would be greater and faster, and that MFC would be greater in patients with stroke than
in healthy subjects. We also hypothesized that COM parameters and MFC would be positively
correlated with TUG sub-task performance time, and that COM displacement would be greater
and MFC smaller in fallers with hemiparesis compared with non-fallers with hemiparesis.

Methods

Subjects
Twenty nine patients with chronic hemiparesis (mean age 54.2±12.2 years) and twenty five
healthy subjects (mean age 51.6±8.7 years) participated in this study. This number of subjects
was sufficient for a statistical power of 95%, based on the computation of the effect size and sta-
tistical power using previous data in the literature [9][25], and validated a posteriori with the
results of the present study [26]. Table 1 presents the characteristics of the participants. All the
patients were able to walk without assistance, the median New Functional Ambulation Classifi-
cation index was 7 (min 6 and max 8), the median lower limb strength score on the Medical
Research Council scale was 4 (min 2 and max 5), the median Berg Balance Scale score was 51
(min 45 and max 54) and the mean TUG time was 19.3±4.2sec. The inclusion criteria for the
patients were: age over 18 years, hemiparesis due to stroke, ability to carry out several TUG
tests without the use of an assistive device and medically stable enough for participation in the
protocol. Patients were excluded if they had other neurological, orthopedic or medical disor-
ders that might interfere with the test. Falls were defined as any event that led to an unplanned,
unexpected contact with a supporting surface [10]. According to this definition, 14 patients fell
during the 3 months prior to inclusion. Two of these patients were not considered as fallers in
this study since they did not fall during gait (one fell in the bathtub and the other entering a
car). The fallers group therefore consisted of 12 patients, and the non-fallers group of 17
patients. The healthy subjects had no neurological or orthopedic impairments. All patients and

Table 1. Subject characteristics.

Age (years) Height (m) Weight (kg) Gender (m/f) Time since stroke (years) Hemiparetic side

Hemiparetic patients 54.2±12.2 1.68±0.09 73.2±16.2 18m/ 11f 7.9±5.7 12 right / 17 left

Healthy subjects 51.6±8.7 1.67±0.1 65.6±14.7 11m/ 14f - -

doi:10.1371/journal.pone.0140317.t001
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healthy subjects gave their written informed consent in accordance with the ethical codes of
the World Medical Association and the guidelines of our local ethics committee who approved
the study (Comité de protection des personnes Ile de France XI, Ref 13005. CNIL, Ref DR-
2013-283).

Experimental procedure
Three-dimensional (3D) kinematic data were recorded while subjects performed the TUG test.
Thirty-four markers placed on anatomical landmarks according to the Helen Hayes marker set
[27],[28],[29] were tracked by an optoelectronic motion capture system (sampling frequency
100 Hz, Motion Analysis Corporation, Santa Rosa, CA, USA). The same person positioned all
the markers to ensure good reliability. The greater trochanter and the anterior superior iliac
spine were added to improve the reconstruction of the trajectories of joint coordinate systems.
This marker set allowed the creation of a 12-segment rigid-link model of the body, using
Dempster's anthropometric table which is routinely used in gait analysis [30],[31].

All participants performed 3 TUG tests which involved rising from a stool, walking 3m,
turning around a cone and returning to sit, at their own comfortable speed. The original TUG
test involves a standard chair with armrests and does not specify the subject’s position or the
direction of the turn [8]. However to ensure the reliability of the results, the conditions were
standardized [32][33][34]. Subjects sat on a stool set to 100% of the distance from the head of
the fibula to the floor [35], their knees were flexed to 100°, feet were placed symmetrically and
arms were held out from the body [32],[33],[36],[37].

Marker trajectories were filtered using a low-pass Butterworth filter with a cut off frequency
of 6 Hz [38]. The phases of the gait cycle were defined according to Perry [39] and were deter-
mined using the Open-source Biomechanical Tool Kit package for MATLAB [40]. This tool
was also used to determine the 3 sub-phases of the TUG test (walking toward the cone (GO);
turning (Turn), return to the stool (Return)), according to previous studies [37],[41],[42]. The
data were then exported to Matlab (R14, The MathWorks Inc., Natick, MA, USA) for calcula-
tion of the biomechanical parameters.

The two walking sub-tasks (Go and Return) and the turning sub-task (Turn) of the TUG
were analyzed. The sit-to-stand and stand-to-sit sub-tasks were not considered since they have
already been largely evaluated in patients with stroke [35], [32]. The time taken to perform
each sub-task was measured.

Markers and estimated joint centers were used to calculate the center of mass (COM) of
each individual body segment [43].

Whole body COM position data were then calculated with the following Eq 1:

COMx ¼ m1 x1 þ m2 x2 þ . . . ::þ mi xi
M

¼ 1

M

XN
i¼1

mi xi

where M = whole body mass
mi = mass of the ith segment = (whole body mass) x (mass fraction for ith segment from the

anthropometrics.dat file)
xi = the x-coordinate of the center of mass for the ith segment with respect to the calibration

origin
N = the number of body segments
COMmovements were analyzed in the subject reference frame with respect to the line of

gait, considered as the trajectory of the sacral marker.
The amplitude and velocity of COM displacement in the mediolateral (ML) and vertical

(Vert) directions were analyzed. The ML-COM displacement was the distance between the
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most leftward and rightward positions of the COM and the Vert-COM displacement was the
distance between the highest and lowest positions of the COM. The maximum velocity of
COM displacement was also calculated in the mediolateral (ML-V) and vertical (Vert-V)
directions.

MFC was calculated by subtracting the height of the toe marker (between the second and
the third toe) during mid-stance from the minimum height of the toe marker during mid-
swing, for each gait cycle and for both limbs, since reduced MFC at this instant indicates an
increased likelihood of tripping [44],[45],[46].

Statistical analysis
Descriptive statistics including means and standard deviations were calculated for each param-
eter and each sub-task of the TUG (Go, Turn, Return). The data were normally distributed
according to the Shapiro Wilk test. To compare hemiparetic patients and healthy subjects,
intergroup analysis, independent Student t tests were used for each TUG sub-task. To compare
sub-tasks (Go, Turn and Return) in each group (intragroup analysis) repeated measures
ANOVA were carried out. Tukey post hoc tests were then performed on significant compari-
sons. Correlations between TUG performance and COM and MFC parameters were tested
with Pearson’s correlations for both the hemiparetic patients and healthy subjects. The r values
were interpreted according to Domholdt [47]. To compare COM and MFC parameters
between fallers and non-fallers with hemiparesis, independent Student t tests were used. All
significance levels were set at p< 0.05.

Results
Results of the TUG performance time and COM and MFC parameters for each sub-task and
both groups are presented in Table 2.

Differences between hemiparetic patients and healthy subjects: inter-
group analysis

COM. Compared to healthy subjects, ML-COM amplitude was significantly greater for
hemiparetic patients during Go, significantly smaller during Turn and was not different during
Return. ML-V was higher for hemiparetic patients during Go and Return, and smaller during
Turn (Fig 1). Vert-COM was significantly greater for hemiparetic patients during Turn and
was not different during the Go and Return sub-tasks. There were no differences between
groups for Vert-V.

MFC. MFC on the paretic side was significantly greater for hemiparetic patients during
Go and Return sub-tasks when compared to healthy subjects but was not different during Turn
(Fig 2). MFC on the non-paretic side was significantly smaller for hemiparetic patients during
Turn when compared to healthy subjects but was not different during the Go and Return sub-
tasks.

Difference between sub-tasks of the TUG for each group: intra-group
analysis

COM. There were significant differences between sub-tasks for both groups for ML-COM,
ML-V, Vert-COM and Vert-V, except for Vert-COM between Go and Return for both groups.

MFC. There were significant differences between sub-tasks for both groups for MFC,
except between Turn and Return for the paretic side in the hemiparetic patients.
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Table 2. TUG performance, COM parameters and foot clearance in hemiparetic patients and healthy subjects during Go, Turn and Return sub-
tasks.

Hemiparetic patients Healthy subjects

Go Turn Return Go Turn Return

TUG performance time (sec) 4.56 (1.01) 3.16 (0.84) 3.81 (0.91)† 2,44 (0,28)* 1,41 (0,25)* 2,28 (0,45)*†

MFC on paretic side (cm) 2,84 (1,18) 3,71 (1,54) 3,72 (1,32)† 1,80 (0,75)* 3,21 (1,55) 2,52 (0,75)*†

MFC on non-paretic side (cm) 1,92 (1,11) 2,26 (1,00) 2,75 (1,00)† 1,98 (0,85) 3,00 (1,02)* 2,72 (0,60)†

ML-COM 8,91 (1,82) 19,02 (4,39) 9,19 (2,04)† 6,71 (1,60)* 25,36 (4,10)* 8,61 (2,01)†

ML-V 23,04 (4,38) 30,15 (5,91) 22,61 (4,56)† 16,97 (2,34)* 57,50 (10,56)* 16,51 (2,61)*†

Vert-COM 4,48 (1,07) 3,58 (0,78) 4,56 (0,99)† 4,24 (0,68) 3,14 (0,74)* 4,14 (0,67)†

Vert-V 18,93 (4,72) 15,50 (3,61) 20,48 (4,32)† 20,92 (4,42) 16,15 (4,35) 20,83 (3,84)†

* significant difference between hemiparetic patients and healthy subjects for the corresponding sub-task of the TUG p<0,05

† significant difference between Go, Turn and Return p<0.05

doi:10.1371/journal.pone.0140317.t002

Fig 1. Medio-lateral COM velocity.

doi:10.1371/journal.pone.0140317.g001
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Correlations between TUG performance and, COM and MFC
parameters (Table 3)
There were significant correlations between TUG performance time and ML-COM (r = -0.59,
p = 0.001) and ML-V (r = -0.61, p = 0.0001, Fig 3) for the Turn in the hemiparetic patients but
not for the healthy subjects. There was also a significant correlation between TUG performance
time and Vert-V for the Return in both groups. There were no significant correlations between
the other parameters and other sub-tasks. There were significant correlations between TUG

Fig 2. Minimum foot clearance on paretic side.

doi:10.1371/journal.pone.0140317.g002

Table 3. Correlations between TUG performance time, and COM andMFC parameters for hemiparetic patients and healthy subjects.

Hemiparetic patients Healthy subjects

Go Turn Return Go Turn Return

MFC on paretic side (cm) R = 0.31 R = -0.12 R = 0.29 R = -0.13 R = -0.09 R = -0.13

MFC on non-paretic side (cm) R = 0.33 R = 0.22 R = 0.13 R = -0.01 R = -0.09 R = -0.17

ML-COM R = 0.31 R = -0.59* R = 0.25 R = -0.09 R = -0.38 R = -0.03

ML-V R = 0.13 R = -0.61* R = 0.008 R = 0.09 R = -0.39 R = -0.38

Vert-COM R = -0.12 R = -0.04 R = -0.06 R = -0.47* R = -0.04 R = -0.55*

Vert-V R = -0.19 R = -0.30 R = -0.43* R = -0.71* R = -0.27 R = -0.64*

* significant correlation between TUG performance and the corresponding parameter at p<0,05

doi:10.1371/journal.pone.0140317.t003
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performance time and Vert-COM and Vert-V for Go and Return in the healthy subjects but
not the hemiparetic patients.

Difference between fallers and non-fallers for COM and MFC
parameters
12 hemiparetic patients constituted the fallers group and 17 patients constituted the non-fallers
group. No differences were found between fallers and non-fallers for total TUG time (respec-
tively 18.61±2.78sec and 19.76±5.04) or time to perform the Go (respectively 4.42±0.94sec and
4.66±1.07), Turn (respectively 2.97±0.75sec and 3.29±0.90) and Return (respectively 3.55
±0.79sec and 4.00±0.97) TUG sub-tasks. Vert-V was higher for the fallers compared to the
non-fallers during the Turn (respectively 17.1±3.7cm/sec and 14.3±3.1cm/s, p = 0.04) but did
not differ between these groups during Go and Return. There were no differences between fall-
ers and non-fallers during any TUG sub-task for ML-COM and ML-V. There were no differ-
ences in MFC for either foot (paretic and non-paretic) between fallers and non-fallers.

Discussion
This is the first study to objectively and accurately assess dynamic stability and foot clearance
during a goal-directed walking task involving turning in hemiparetic patients. This assessment
is in line with recent recommendations regarding falls risk [21],[24] since impaired balance
while walking and potential foot dragging increase the risk of falls [2],[4],[23]. The aims of this
study were (i) to compare vertical and mediolateral displacements of the COM and foot clear-
ance between hemiparetic patients and healthy subjects during the walking and turning sub-
tasks of the TUG test; (ii) to analyze the relationship between COM and clearance parameters
and TUG performance during these TUG sub-tasks; and (iii) to compare COM and clearance
parameters between faller and non-faller patients with hemiparesis. The results showed that

Fig 3. Correlation betweenML COM velocity and TUG performance time during the turning sub-task in hemiparetic patients.

doi:10.1371/journal.pone.0140317.g003
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the majority of parameters studied differed between hemiparetic patients and healthy subjects.
The values of most parameters were greater during the walking sub-tasks and lower during the
Turn in the hemiparetic patients compared with the healthy subjects, except for vertical COM
displacement.

We hypothesized that lateral and vertical COM displacement would be greater and faster in
the hemiparetic patients during the walking and turning sub-tasks of the TUG. This hypothesis
was confirmed for the ML direction during the walking sub-tasks (except ML-COM on
Return). This is in accordance with previous studies in the elderly and subjects with brain
injury during gait and obstacle crossing [17],[18],[19],[48]. This result reflects greater instabil-
ity in hemiparetic patients compared to healthy subjects when walking towards a goal and pre-
paring to turn. This might be explained by the fact that healthy subjects minimized lateral
displacements in order to maximize forward body transfer [49].

The motor behavior during the turning sub-task was interesting. This task involved turning
around a cone, consisting essentially of a rotation of the body toward the new direction with a
lateral translation of the COM [50]. Displacement of the COM in the ML direction was smaller
and slower during the Turn in the patients, reflecting a less efficient movement than the
healthy subjects. Such adaptations have already been evoked by Patla et al (1999) and Vallis
et al (2004) who suggested that healthy subjects reduce motion of the COM when directional
changes are required [51],[52]. Similarly Hollands et al (2001) showed that when healthy sub-
jects turn, there is a lateral displacement of the COM which reflecting translation of the body
in the direction of the turn [50]. It could be hypothesized that hemiparetic patients slow lateral
COMmovement to increase stability. Recently Hurt et al (2015) found that lateral COM veloc-
ity was greater in young adults performing a lateral step during forward walking compared to
older adults [53]. The authors suggested that the younger subjects favored maneuverability
whereas the older subjects favored stability. The findings of the present study during the turn
sub-task are in accordance with these results. Moreover, ML displacement and velocity of the
COM were greater in both the patients and the healthy subjects during turning compared to
the walking sub-tasks. This is not surprising since turning induces more movement in ML
direction relative to walking forward.

Surprisingly, there were no differences between the groups for vertical displacement and
velocity of the COM during the walking sub-tasks. This contrasts with the results of Detrem-
bleur et al (2003) which showed increased vertical displacement of the COM during walking in
hemiparetic patients compared to healthy subjects [20]. Our result is nevertheless in accor-
dance with Chou et al (2004) who found no differences in vertical COM between subjects with
brain injury and healthy subjects during obstacle crossing [18]. The differences between these
results may be related to differences in the tasks evaluated: goal-oriented gait in the present
study, straight-line walking in the study by Detrembleur et al (2003) and obstacle crossing in
the study by Chou et al (2004).

During the turning sub-task, we found greater vertical displacement of the COM in the
patients compared to healthy subjects (no difference for velocity). This likely reflects greater
instability when performing movements in the ML plane since stability requires online control
of COM displacement. Healthy subjects may control vertical COM displacement in order to
ensure the efficiency of lateral movements during a turn. Turning requires altering the spatial
reference to focus on the ML direction in contrast with walking forward. This type of task thus
seems to affect vertical COMmovements.

We hypothesized that COMmovements would be positively correlated with the time to per-
form the sub-tasks of the TUG. The results showed that ML COM displacement and velocity
were significantly negatively correlated (moderate correlations according to Domholdt) with
TUG performance time during the turning sub-task in the hemiparetic patients. This reinforces
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our previous argument that efficient turning requires sufficient ML displacement [50],[51],
[53]. Vertical COMmovements were not correlated with TUG performance in the hemiparetic
patients but were negatively correlated with performance time for the walking sub-tasks in the
healthy subjects. Positive relationships have been found between increased gait velocity and
increased vertical COMmovements in healthy subjects, which is in accordance with our results
[49],[54]. The relationship between ML COM parameters and performance time in the hemi-
paretic patients suggests that ML COM parameters are more relevant than vertical COM
parameters for the assessment of dynamic stability and to explain the performance of hemi-
paretic patients during the TUG test.

We expected that hemiparetic patients would exhibit greater MFC in comparison with
healthy subjects. Our results partly confirmed this hypothesis, showing that MFC was greater
on the paretic side during the walking sub-tasks but not during turning. These results are in
accordance with those of Little et al (2014) who also found an increase in foot clearance during
walking in hemiparetic patients compared to healthy subjects [22]. They assessed 16 individu-
als with stroke during over-ground walking at self-selected speed and 9 non-disabled control
subjects, and found MFCs of respectively 3.25±0.34cm and 1.48±0.69cm. Winter (1992)
reported a MFC of around 1.29cm for healthy subjects [44]. In the present study, we found
higher MFCs during the walking sub-tasks for both groups (see Table 2). This difference could
be due to the type of the task assessed, walking in anticipation of turning may be more complex
than walking in a straight line as in the studies by Little et al and Winter. It was also interesting
to note that, although during the walking sub-tasks there were no differences between non-
paretic MFC and healthy subject MFC, non-paretic MFC was lower during the turn. This was
not the case for paretic MFC. Turning while walking is a complex task requiring more control
than straight walking to avoid tripping. This may explain the greater MFC in the healthy sub-
jects during turning compared to the walking sub-tasks. Similarly, paretic MFC was increased
between Go and Turn in the hemiparetic patients and remained increased for Return on the
paretic side, or increased more for Return on the non-paretic side. We could hypothesize that
the higher MFC during walking in hemiparetic patients and during turning in both groups
reflect adaptations to potentially complex situations requiring greater control. This is corrobo-
rated by other studies. Heasley et al (2004) found a significant increase in MFC when healthy
subjects stepped up with blurred vision compared with clear vision, suggesting that the safety
margin is increased in uncertain conditions [55]. MFC is also increased when walking over
rocky ground compared with smooth [56]. These results all suggest that MFC is increased
in complex or uncertain conditions to reduce the risk of tripping [55],[56],[57] whatever
the population studied. This parameter thus provides information regarding gait adaptations
to complex conditions, but is not correlated with TUG performance time in hemiparetic
patients.

We also hypothesized that COMmovements would be greater and MFC smaller in fallers
with hemiparesis than non-fallers. The TUG test is considered to be useful to identify fallers
and non-fallers among older subjects and stroke patients [10],[11],[12], however our results
showed that the time taken to carry out each sub-task of the total TUG did not differ between
fallers and non-fallers. The only parameter which differed between fallers and non-fallers was
the vertical velocity of the COM during the turning sub-task. This parameter is related to
dynamic stability and can thus distinguish fallers from non-fallers during a complex locomotor
task. MFC (related to the risk of tripping) and ML COM displacement did not differ between
fallers and non-fallers. This is in accordance with a recent review in elderly subjects stating that
MFC does not generally differ between fallers and non-fallers [7].
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Limits
Displacement of the COM should be interpreted with caution. This parameter depends on bal-
ance capacity; previous studies found greater displacement of the COM in subjects with
impaired balance [18],[19],[20]. However, it also depends on gait speed [49],[54]. Orendurff
et al (2004) and Staszkiewicz et al (2010) showed that vertical COM displacement increased
and lateral COM displacement decreased with increasing gait velocity in healthy subjects [49],
[54]. In the present study, the gait speed of the patients was lower than the healthy subjects,
thus, according to the literature, COM displacement should have been smaller in the vertical
direction and greater in the lateral direction compared to healthy subjects for the walking sub-
tasks. However COM parameters were either greater in the hemiparetic patients or not differ-
ent between groups, thus we can be confident with our previous interpretation. Hamacher et al
(2011) reviewed studies of gait stability in elderly subjects and suggested that the analysis of
variability is the most pertinent assessment to differentiate fallers from non-fallers [21]. Vari-
ability of MFC is greater in older fallers compared to older non-fallers [7]. We could not ana-
lyze this parameter because of the small number of gait cycles involved in the TUG test.
However, it might be interesting to carry out an analysis of variability in further studies with a
large number of trials and a large number of gait cycles.

Conclusion
This study presents an innovative approach for the assessment of dynamic stability and risk of
tripping during gait-related activities of daily living in hemiparetic patients, as has been recom-
mended [21],[24]. The results suggest that the analysis of ML COM parameters is relevant for
the assessment of dynamic stability and to explain TUG performance in hemiparetic patients.
ML COM velocity decreased during turning, reflecting cautious gait. It increased during ori-
ented-gait, reflecting instability. Vertical COM velocity during the turn distinguished fallers
from non-fallers. Turning appears to be a relevant locomotor task to analyze dynamic stability
and risk of falling. MFC reflected adaptations during goal-oriented gait in the hemiparetic
patients but was not related to performance time. The instrumented analysis of gait-related
activities of daily living thus has important clinical applications. Accurate analysis of COM dis-
placements during oriented gait and turning tasks of the TUG in hemiparetic patients is useful
to understand instability and risk of falling. Further studies assessing the effects of rehabilita-
tion programs on the control of dynamic stability and risk of tripping in hemiparetic patients
would be useful.
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Les résultats de cette étude ont mis en évidence des déplacements du COM plus importants 
pour les patients hémiparétiques, par rapport aux sujets sains, dans le plan médio-latéral pour les 
phases de marche orientée et dans le plan vertical pour la phase de demi-tour, traduisant une plus 
grande difficulté à maintenir la stabilité. De plus, la vitesse verticale du COM lors du demi-tour permettait 
de discriminer les patients chuteurs (ayant une plus grande vitesse). Les déplacements latéraux du 
COM lors du demi-tour n’étaient pas plus importants pour les patients hémiparétiques, suggérant une 
marche précautionneuse des patients lors de cette phase. Ceci pourrait traduire une stratégie mise en 
jeu par les patients hémiparétiques pour assurer le maintien de leur stabilité.

Un MFC plus important pour les patients hémiparétiques était retrouvé lors des phases de marche 
orientée uniquement, signant une capacité d’adaptation des patients hémiparétiques à une situation 
potentiellement à risque d’instabilité. 

Les résultats de cette étude indiquaient également l’existence d’une corrélation entre les 
déplacements du COM et la performance au TUG lors de la phase du demi-tour chez les patients 
hémiparétiques. 

Cette étude légitime, en pratique clinique, une analyse des déplacements du COM et du MFC 
au cours d’activités locomotrices variées. Cependant, le questionnement des principaux symptômes 
cliniques impliqués dans le défaut de stabilité des patients hémiparétiques lors d’une tâche locomotrice 
complexe demeure à l’issue de cette étude. Par conséquent, il semble qu’une meilleure connaissance 
des symptômes possiblement incriminés dans ces perturbations pourrait permettre de guider la prise 
en charge thérapeutique des patients et ainsi mieux prévenir leur risque de chute. 
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Résultats complémentaires  : Corrélations entre les données cliniques des patients 
hémiparétiques et, les paramètres du COM et le MFC 

Contexte  

Les résultats de l’étude précédente ont montré que les paramètres de stabilité et de MFC évalués 
lors des tâches de marche orientée et de demi-tour du TUG différaient entre les patients hémiparétiques 
et les sujets sains. L’influence des déficits sensitifs, moteurs et des troubles de l’équilibre évalués 
cliniquement, des patients hémiparétiques pour le contrôle de ces paramètres du COM et du MFC au 
cours de différentes tâches locomotrices n’a, à ce jour, jamais été spécifiquement étudiée. Pourtant une 
meilleure connaissance de leur impact respectif sur la stabilité au cours d’activités locomotrices variées 
pourrait s’avérer très intéressante d’une part pour mieux comprendre les mécanismes impliqués et 
d’autre part pour améliorer la prise en charge thérapeutique de ces patients. 

Par conséquent l’objectif de cette analyse complémentaire était d’établir les liens entre les 
paramètres de déplacement du COM dans les plans latéral et vertical ainsi que les paramètres de MFC 
d’une part et les données issues du bilan clinique des patients hémiparétiques d’autre part. Nous avons 
émis l’hypothèse que les données cliniques relatives aux capacités d’équilibration telles que le score de 
la Berg Balance Scale (BBS)  seraient les plus corrélées aux paramètres du COM et du MFC.

Méthode  

Les paramètres du COM et du MFC des vingt-neuf patients hémiparétiques au cours des phases 
de marche orientée et de demi-tour du TUG (réalisé en condition standardisée) ont été corrélés à la 
spasticité, à la commande motrice, à la sensibilité superficielle et profonde, au score à la BBS et à la 
confiance que le patient a en son équilibre lors d’activités diverses. 

Les paramètres cliniques étudiés étaient les suivants : 

- La spasticité a été évaluée par l’échelle d’Ashworth modifiée et le score global correspondait à 
la somme des scores obtenus lors de l’évaluation des muscles fléchisseurs et extenseurs de genou et 
de cheville du côté parétique. 

- La commande motrice a été évaluée par l’échelle Medical Research Council (MRC) et le score 
global correspondait à la somme des scores obtenus lors de l’évaluation des muscles  fléchisseurs et 
extenseurs de hanche, de genou et de cheville du côté parétique. 

- La sensibilité superficielle a été évaluée sur la plante de pied et la sensibilité profonde a été 
évaluée au niveau du gros orteil par le Nottigham sensory assessment. 

- Les capacités d’équilibre ont été évaluées par la Berg Balance Scale (BBS).

- La confiance du patient en son équilibre a été évaluée par l’Activities-specific Balance Confidence 
(ABC). 
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Les paramètres du COM et le MFC ont été quantifiés selon la même méthode que celle décrite 
dans l’article précédent 

Les paramètres du COM et du MFC des vingt-neuf patients hémiparétiques au cours des phases 
de marche orientée et de demi-tour du TUG (réalisé en condition standardisée) ont été corrélés à la 
spasticité, à la commande motrice, à la sensibilité superficielle et profonde, au score à la BBS et à la 
confiance que le patient a en son équilibre lors d’activités diverses. Les données n’étant pas toutes 
continues, des corrélations de Spearman ont été effectuées avec un seuil de significativité retenu à 
p<0.008 (correction effectuée : 0.05 / 6 paramètres) et la force de la corrélation était interprétée d’après 
Domholdt (Domholdt, 2000).  

Résultats 

Les scores aux évaluations cliniques ont été précédemment présentés dans le tableau 5. Les 
détails des scores moteurs, sensitifs et fonctionnels sont présentés dans les annexes 2, 3 et 4. Les 
résultats des corrélations sont présentés dans le tableau 6. 
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Tableau 6 : Corrélations entre les données cliniques et les paramètres du COM dans les plans 
vertical et médio-latéral et le MFC des patients hémiparétiques (présentation des r de Spearman).

Somme 
spasticité

Somme 
MRC

Pression 
plante pied

Sensibilité 
profonde BBS ABC

MFC Côté 1 Aller 0,17 0,13 -0,14 -0,03 -0,04 -0,01

MFC Côté 1 DemiT 0,21 0,08 -0,13 -0,13 0,18 0,31

MFC Côté 1 Retour 0,14 0,12 -0,21 -0,16 0,05 0,16

MFC Côté 2 Aller 0,00 -0,10 -0,11 0,10 -0,46 -0,21

MFC Côté 2 DemiT -0,14 0,06 -0,17 -0,18 -0,27 -0,06

MFC Côté 2 Retour 0,18 -0,05 -0,07 0,02 -0,34 0,09

COM ML Ampl Aller -0,04 -0,13 0,07 0,00 -0,12 -0,26

COM ML Vitesse Aller 0,13 -0,20 -0,09 -0,18 -0,07 -0,04

COM ML Ampl DemiT -0,26 0,43 0,36 0,13 0,54* 0,10

COM ML Vitesse DemiT -0,08 0,31 0,21 0,09 0,38 0,19

COM ML Ampl Retour -0,24 -0,02 0,05 -0,13 -0,09 -0,16

COM ML Vitesse Retour 0,12 -0,08 -0,12 -0,22 0,03 0,03

COM vert Ampl Aller -0,02 -0,20 0,23 0,16 0,04 0,27

COM vert Vitesse Aller 0,11 -0,18 0,00 0,10 0,01 0,38

COM vert Ampl DemiT -0,30 -0,05 0,05 -0,06 -0,04 0,02

COM vert Vitesse DemiT -0,01 0,03 -0,24 -0,26 -0,04 0,25

COM vert Ampl Retour -0,06 -0,16 0,30 0,18 0,07 0,31

COM vert Vitesse Retour 0,03 -0,13 -0,08 0,00 0,04 0,41

MFC : minimum foot clearance​ 
COM ML Ampl : amplitude des déplacements du COM dans le plan médio-latéral  
COM ML Vitesse : vitesse des déplacements du COM dans le plan médio-latéra 
COM vert Ampl : amplitude des déplacements du COM dans le plan vertical 
COM vert Vitesse : vitesse des déplacements du COM dans le plan vertical 
La somme des scores de spasticité correspond aux muscles quadriceps, ischio-jambiers et triceps sural (évalué avec l’échelle 
d’Ashworth modifiée) 
La somme des scores de MRC (motricité volontaire) correspond aux fléchisseurs et extenseurs de la hanche, du genou et de la 
cheville (évalués avec l’échelle Medical Research Council, MRC) 
La pression de la plante de pied et la sensibilité profonde (des orteils dans ce tableau) ont été évaluées avec le Nottigham 
sensory assessment 
BBS, Berg Balance Scale, évaluant l’équilibre (score 0/ 56) 
ABC, Activities-specific Balance Confidence, évaluant la confiance que le patient a en son équilibre au cours de diverses 
activités quotidiennes (score 0/ 100%)  
* Corrélation significative à p<0.05 (corrélation de Spearrman) 
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La BBS était significativement positivement corrélée avec l’amplitude de déplacement du COM 
dans le plan médio-latéral lors du Demi-tour. Aucune autre corrélation significative n’était retrouvée pour 
la spasticité, la motricité volontaire, la sensibilité et la confiance que le patient a en son équilibre.

Discussion 

Le seul paramètre clinique corrélé aux paramètres du COM et du MFC était le score à la BBS. 
Plus le patient avait un score élevé à la BBS, plus son amplitude de rotation au cours du demi-tour 
était élevée. Cette corrélation positive, qu’on peut qualifier de modérée d’après Domholdt  (r compris 
entre 0.50 et 0.69) (Domholdt, 2000), traduit l’importance de l’équilibre pour une réalisation efficiente de 
cette tâche du contournement d’un obstacle. Ceci corrobore les paramètres reflétant l’équilibration lors 
de la marche (pourcentage de simple appui côté parétique et de phase oscillante côté non-parétique) 
explicatifs de la performance lors du demi-tour (résultats de l’étude 1). De plus, le score des patients à la 
BBS est également le paramètre clinique corrélé avec le plus grand nombre de paramètres explicatifs de 
la performance, pour chacune des phases du TUG analysées (résultats de l’étude 1). Ceci est également 
en accord avec l’évolution précautionneuse des patients constatée lors du demi-tour (diminution des 
mouvements du COM dans le plan médio-latéral – résultats de l’étude 3).

Au final, il semble légitime de trouver une corrélation entre les paramètres biomécaniques de 
stabilité et l’échelle clinique d’évaluation de l’équilibre. Cependant, les capacités d’équilibre étant 
connues pour être en lien avec les déficits sensitivo-moteurs, il est surprenant de ne trouver aucune 
corrélation significative entre les paramètres du COM et du MFC et, les déficits sensitivo-moteurs des 
patients.

Les résultats de l’étude 1 ont mis en évidence une corrélation entre les déficits de la motricité 
volontaire et les paramètres explicatifs de la performance lors du demi-tour (paramètres reflétant la 
stabilité), mais l’importance du déficit moteur ne semble pas interférer avec la régulation du COM et du 
MFC comme en témoigne le résultat des corrélations de cette étude. Par conséquent, les résultats de 
la présente étude mettent en exergue l’importance de la stabilité, sans particulièrement incriminer les 
déficits moteurs, la spasticité ou les troubles sensitifs, pour effectuer de manière efficiente et sécuritaire 
un demi-tour par contournement d’un obstacle. Lors d’une tâche de navigation impliquant un demi-
tour, la stabilité ne semble donc pas spécifiquement expliquée par un symptôme en particulier (les 
déficits moteurs, la spasticité, les troubles sensitifs superficiels ou profonds) mais probablement par 
une conjonction de symptômes.
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Etude 4 : Caractérisation de l’organisation des patients hémiparétiques par rapport à des 
sujets sains, à partir de l’analyse de leur trajectoire locomotrice lors des phases de marche 
orientée et de demi-tour du TUG.

Les études précédentes montraient que pour faire face à des situations potentiellement à 
risque, les patients hémiparétiques font preuve d’adaptations avec une majoration du MFC, le 
ralentissement du mouvement et la priorisation de certains paramètres spatio-temporels lors d’un 
demi-tour. Les études précédentes étaient centrées sur des paramètres focaux et spécifiques 
relatifs à la cinématique des membres inférieurs et la stabilité. Une approche récemment proposée, 
renseignant sur le comportement locomoteur global du sujet, est l’analyse des trajectoires 
locomotrices au cours de tâches de navigation dans l’espace. L’étude de celles-ci chez le patient 
hémiparétique s’avèrerait par conséquent intéressante dans ce contexte de marche orientée et demi-
tour générant des difficultés à maintenir la stabilité. Les résultats de l’étude 3 conduisent à s’interroger 
sur l’existence d’une possible gestion particulière de la trajectoire pour une tâche locomotrice 
suscitant un défaut de stabilité chez  les patients hémiparétiques. 

Les objectifs de cette étude étaient (1) d’analyser les trajectoires locomotrices des patients 
hémiparétiques lors des  phases de marche orientée et de demi-tour du TUG et les comparer à celles 
des sujets sains ; (2) de comparer les paramètres des trajectoires entre les patients hémiparétiques 
chuteurs et les non-chuteurs et entre les patients hémiparétiques droits et gauches; et (3) évaluer la 
corrélation entre les paramètres de trajectoire et le score à la BBS des patients hémiparétiques. Nous 
émettions l’hypothèse que les trajectoires des patients hémiparétiques seraient déviées par rapport 
à celles des sujets sains et particulièrement lors de la phase du demi-tour du TUG, phase la plus 
complexe en terme de stabilité (Lamontagne et al., 2010). Nous émettions également l’hypothèse que 
les trajectoires seraient différentes entre les patients hémiparétiques chuteurs et les non-chuteurs et 
seraient plus déviées chez les patients hémiparétiques gauches que chez les patients hémiparétiques 
droits du fait de l’altération de la perception de la verticale à la suite d’un AVC hémisphérique droit. 
Nous supposions par ailleurs que les trajectoires les plus longues seraient liées aux faibles scores à 
la BBS, en considérant que les patients les moins stables dévieraient le plus de la trajectoire optimale 
pour assurer une bonne stabilité.

La trajectoire du centre de masse a été analysée chez vingt-neuf patients hémiparétiques 
et vingt-cinq sujets sains effectuant le TUG en condition standardisée. La déformation temporelle 
dynamique et la distance de Hausdorff, paramètres permettant de quantifier la déviation entre une 
trajectoire considérée (du sujet analysé) et une trajectoire de référence (moyenne de la trajectoire des 
sujets sains) et, la longueur de la trajectoire totale lors du TUG ont permis de comparer les patients 
hémiparétiques et les sujets sains, les patients chuteurs et non-chuteurs et les patients ayant été 
victimes d’un AVC hémisphérique droit et ceux victimes d’un AVC hémisphérique gauche. 
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Abstract

Background

The Timed Up and Go (TUG) test is widely used to assess locomotion in patients with stroke

and is considered to predict the risk of falls. The analysis of locomotor trajectories during the

TUG appears pertinent in stroke patients. The aims of this study were i) to analyze locomo-

tor trajectories in patients with stroke during the walking and turning sub-tasks of the TUG,

and to compare them with healthy subjects, ii) to determine whether trajectory parameters

provide additional information to that provided by the conventional measure (performance

time), iii) to compare the trajectory parameters of fallers and non-fallers with stroke and of

patients with right and left hemisphere stroke, and iv) to evaluate correlations between tra-

jectory parameters and Berg Balance Scale scores.

Methods

29 patients with stroke (mean age 54.2±12.2 years, 18 men, 8 fallers) and 25 healthy sub-

jects (mean age 51.6±8.7 years, 11 men) underwent three-dimensional analysis of the

TUG. The trajectory of the center of mass was analyzed by calculation of the global trajec-

tory length, Hausdorff distance and Dynamic TimeWarping. The parameters were com-

pared with a reference trajectory during the total task and each sub-task (Go, Turn, Return)

of the TUG.

Results

Values of trajectory parameters were significantly higher for the stroke group during the

total TUG and the Go and Turn sub-tasks (p<0.05). Moreover, logistic regression indicated

that these parameters better discriminated stroke patients and healthy subjects than the

conventional timed performance during the Go sub-task. In addition, fallers were
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distinguished by higher Dynamic TimeWarping during the Go (p<0.05). There were no dif-

ferences between patients with right and left hemisphere stroke.

Discussion and Conclusion

The trajectories of the stroke patients were longer and more deviated during the turn and

the preceding phase. Trajectory parameters provided additional information to timed perfor-

mance of this locomotor task. Focusing rehabilitation programs on lead-up to turn and turn-

ing could be relevant for stroke patients since the Turn was related to the balance and the

phase preceding the turn seemed to distinguish fallers.

Introduction
Stroke is a major cause of disability in adults [1]. It frequently results in hemiparesis (partial
paralysis of one side of the body) which causes slow gait with kinematic anomalies [2],[3].
Methods of quantitative gait analysis are becoming increasingly used in clinical practice to aid
clinical decision-making by the assessment of spatio-temporal, kinematic and kinetic parame-
ters [4]. Three-dimensional analysis is the current gold standard for the biomechanical assess-
ment of patients with abnormal gait [5]. This typically involves the analysis of straight-line
gait, however straight-line gait does not reflect daily life situations which include curved paths,
obstacle circumvention and U-turns [6]. Curved paths and obstacle circumvention have been
studied in healthy subjects [7],[8],[9] and more recently in subjects with stroke [10],[11],[12].
The Timed Up and Go (TUG) test [13],[14] involves rising from a chair, walking 3m, turning
180°, returning, and sitting down again. It thus reflects the main aspects of gait required in
daily life. It is rated according to performance time [13],[14],[15]. The test is useful and is
quick and easy to perform, therefore it is widely used in clinical practice for the assessment of
global locomotor capacity in stroke patients. However, performance time does not provide any
information regarding the biomechanical behaviour of patients during the test. Moreover, sev-
eral authors have recommended refining the TUG test by timing each sub-task (23), as well as
carrying out a biomechanical analysis of each sub-task (24).

A recent approach to the analysis of biomechanical behavior during tasks involving curved
gait is the study of trajectory. Locomotor trajectory has been evaluated in healthy subjects dur-
ing imposed straight and curved walking (indicated by a line drawn on the floor) [7] as well as
walking through doors with different spatial orientations [16]. The results suggest that the con-
trol of the locomotor pattern is based on the whole-body locomotor trajectory, rather than a
sequence of foot pointings. To our knowledge, only one study has investigated locomotor tra-
jectory in stroke patients [17]. The trajectories of patients with stroke and healthy subjects
were evaluated in a virtual environment which created 5 different scenes of translational optic
flow (a pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by
the relative motion between an observer and the scene) [17]. The medio-lateral and antero-
posterior trajectories of the center of mass (COM) were computed while subjects were
instructed to “walk straight with respect to the scene they were visualizing”. Displacement of
the COM was altered in the patients with motor disorders in contrast with the healthy subjects
who displayed stereotypical behavior. The authors suggested that this was the result of an alter-
ation in perception and/or a poor integration of sensorimotor information. No studies have
analyzed the spontaneous trajectories of patients with stroke in a “real environment” during
tasks encountered in daily life. Since many stroke patients have spatial disorders, such an

Locomotor Trajectories in Stroke
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analysis would be clinically relevant to guide rehabilitation, and the TUG test appears to be a
pertinent test on which to base the analysis. Moreover, this test can easily be broken down into
sub-tasks to analyze different locomotor task. In addition, it has been shown that perception of
body verticality is altered following right hemisphere stroke [18], thus locomotor trajectories
may differ between patients with right and left hemisphere stroke.

Several methods in the literature have been used to evaluate locomotor trajectories. The
amount of deviation from either a required or an averaged trajectory appears to be particularly
relevant [7],[16]. Trajectory deviation can be quantified using several parameters. The simplest
is the Euclidean distance, however this method is not sufficiently accurate to compare groups
with different gait velocities [19]. The Hausdorff Distance (HD) and Dynamic Time Warping
(DTW) appear to be appropriate for the present study since these parameters can be used to
compare the geometry and the spatio-temporal time series of two sequences of different
lengths. HD and DTW have been used to evaluate moving objects [20], for handwriting recog-
nition [21] and to study walking behavior [22],[23]. Since the gait of stroke patients is slower
than that of healthy subjects, these parameters are pertinent [19],[20] to compare their locomo-
tor trajectories.

The TUG test is considered to indicate a risk of falls [24],[25]. Older subjects are classified
as fallers if they take 13.5sec or more to perform the test and stroke patients are considered at
risk of falls if they take 15sec or more [24],[25]. However, a more recent study has suggested
this test is not sufficiently accurate to discriminate fallers and non-fallers [26]. We thus propose
to use HD and DTW to determine whether these trajectory-related parameters might permit to
distinguish stroke-related fallers and non-fallers.

The aims of this study were thus: i) to analyze locomotor trajectories using HD and DTW in
patients with stroke during the walking and turning sub-tasks of the TUG and to compare
them with healthy subjects; ii) to determine whether trajectory parameters provide additional
information to that of the conventional measure (performance time); iii) to compare the trajec-
tory parameters of fallers and non-fallers with stroke and of patients with right and left hemi-
sphere stroke and iv) to evaluate correlations between trajectory parameters and Berg Balance
Scale scores. This study is the first to assess the locomotor trajectories of patients with stroke in
real life conditions. The results should yield pertinent information for clinicians, helping to ori-
entate rehabilitation and perhaps also to identify potential fallers. We hypothesized: 1) that the
trajectories of stroke patients would deviate from those of healthy subjects, particularly during
the Turn sub-task of the TUG since this task is the most challenging regarding stability, 2) that
trajectory parameters would provide additional information to performance time, 3) that tra-
jectories would differ between fallers and non-fallers and that since right hemisphere large ves-
sel distribution stroke may alter perception of body verticality, it may also alter the locomotor
trajectories and 4) that longer trajectories would be related to a poorer BBS scores since we sup-
posed that patients with impaired balance would deviate from the optimal trajectory to ensure
stability.

Methods

Subjects
Twenty nine patients with chronic stroke (mean age 54.2±12.2 years, 18 men), who were in- or
outpatients in our department of physical medicine and rehabilitation, and twenty five healthy
subjects (mean age 51.6±8.7 years, 11 men) were included. This number of subjects was suffi-
cient to obtain a minimum statistical power of 95% with a significance level (alpha error) of
0.05, based on calculation of the effect size and statistical power using previous data published
on TUG performance in stroke subjects [14],[27] [28]. Based on the current sample size and

Locomotor Trajectories in Stroke
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the results of DTW during the Turn and trajectory length, the effect sizes obtained were respec-
tively 1.56 and 2.37 and the subsequent powers were respectively 0.99 and close to 1 which
allow us to be confident in our results. Inclusion criteria were: hemiparesis following stroke,
over 18 years old and able to carry out the TUG test several times consecutively without using
an assistive device. Exclusion criteria were the diagnosis of other neurological or orthopedic
conditions, or having undergone surgical procedures during the last 6 months. Participants’
characteristics are presented in Table 1. Patients were considered as fallers if they had fallen at
least once within the last 3 months. The fallers’ characteristics are presented in Table 2. Eight
patients had gait-related falls and constituted the group of fallers in this study. Six of these
patients had fallen indoors (one while walking, one while walking in a narrow space, three
while turning and one tripped on a rug) and 2 patients had fallen outdoors in crowded spaces.
Six patients were not included in the faller group since they fell in conditions that did not

Table 1. Subject characteristics.

Stroke patients
(n = 29)

Healthy subjects
(n = 25)

Age (years) 54.2±12.2 51.6±8.7

Height (m) 1.68±0.09 1.67±0.1

Weight (kg) 73.2±16.2 65.6±14.7

Gender (m/f) 18m / 11w 11m / 14w

Mean self-selected gait speeds for the walking phases
of the TUG (m/s)

0.4±0.006 0.7±0.04

Time since stroke (years) 7.9±5.7 -

Stroke etiology 19 ischemia / 10
hemorrhage

-

Hemiparetic side 12 right / 17 left -

Falls 8 fallers related to gait -

Modified Ashworth sum 4 [2;7] -

MRC sum 23 [19;25] -

Foot sensation 1 [1;2] -

Toe proprioception 2 [1;3] -

Barthel index 100 [95;100] -

NFAC 7 [7;7] -

BBS 51 [49;52] -

ABC 76,3±12,9 -

Patients with stroke had a significantly decreased gait speed compared to healthy subjects (p<0.05)

Falls: patients were considered as fallers if they had fallen at least once within last 3 months

Spasticity: median [interquartile range Q1;Q3] of the sum of quadriceps, rectus femoris, hamstring and

triceps surae spasticity assessed with Modified Ashworth Scale (0–4).

MRC (Medical Research Council scale): median [interquartile range Q1;Q3] of the sum of hip, knee and

ankle flexor and extensor strength (0–5)

Foot sensation: median [interquartile range Q1;Q3] of the foot sensation score assessed with the

Nottingham Sensory Assessment (0 = absent, 1 = impaired, 2 = normal)

Toe proprioception: median [interquartile range Q1;Q3] of the toe proprioception score assessed with the

Nottingham Sensory Assessment (0 = absent, 1 = direction incorrect, 2 = direction ok, inaccurate position,

3 = direction ok, position accurate to 10°)

Barthel index: median [interquartile range Q1;Q3] Barthel score (0 to 100)

NFAC: median [interquartile range Q1;Q3] New Functional Ambulation Classification score (0 to 8)

BBS: median [interquartile range Q1;Q3] Berg Balance Scale score (0 to 56)

ABC: mean±sd Activities-specific Balance Confidence scale (0 to 100%)

doi:10.1371/journal.pone.0149757.t001
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involve walking (in the bathtub, on the stairs, rising from a chair, crossing an obstacle and
entering a car). All patients were found to be capable of providing informed consent during the
medical examination, and all gave written informed consent in accordance with the ethical
codes of the World Medical Association. The study was approved by our local ethics committee
(Comité de protection des personnes Ile de France XI, Ref 13005. CNIL, Ref DR-2013-283).

Experimental procedure
All participants performed 3 TUG tests under standardized conditions. They wore the same
type of comfortable shoes [29], sat on a stool set to 100% of the distance from the head of the
fibula to the floor [30] with their knees flexed to 100°, their feet placed symmetrically and their
arms held out from the body [31],[32],[33]. Participants were instructed to rise from the stool,
walk 3m, turn around a cone towards their paretic side (non-dominant side for healthy sub-
jects), return to the stool and sit down, at their own comfortable speed. The TUG tests were
recorded with a motion analysis system (Motion Analysis Corporation, Santa Rosa, CA, USA,
sampling frequency 100 Hz). Thirty-four markers were fixed, by the same person, to specific
bony landmarks according to the Helen Hayes marker set [34],[35],[5]. The marker set was
used to create a 12-segment rigid-link model of the body using Dempster's anthropometric
table which is routinely used in gait analysis [36],[37]. Markers were tracked by 8 infrared cam-
eras and trajectories were filtered using a low-pass Butterworth filter with a cut off frequency of
6 Hz [38]. An open-source Biomechanical Tool Kit package for MATLAB [39] was used to
define the phases of the gait cycle and sub-tasks of the TUG. The gait phases were defined
according to Perry [3] and sub-tasks of the TUG were defined according to previous studies
[33],[40],[41]. The three sub-tasks of the TUG that involve walking were analysed: the first ori-
ented-gait sub-task (Go) which begins at toe off of the first step and ends with the first foot
strike in the direction of the turn, the turning sub-task (Turn) which ends at the first foot strike
lined up with the stool and the second oriented-gait sub-task (Return) ends with foot strike of
the last step prior to the turn to sit [12].

Locomotor trajectory was evaluated by the displacement of the center of mass (COM) with
the following equation 1:

COMx ¼ m1 x1 þm2 x2 þ . . . ::þmi xi
M

¼ 1

M

XN
i¼1

mi xi

where M = whole body mass
mi = mass of the ith segment = (whole body mass) x (mass fraction for ith segment from the

anthropometrics.dat file)
xi = the x-coordinate of the center of mass for the ith segment with respect to the calibration

origin
N = the number of body segments
The parameters analyzed were:

Table 2. Characteristics of the fallers and non-fallers.

Fallers (n = 8) Non-fallers (n = 21)

Age (years) 59,5±11,6 52,2±12,1

Gender (m/f) 3m / 5w 15m / 6w

Hemiparetic side 2 right / 6 left 10 right / 11 left

TUG (sec) 19,7±1,8 19,1±4,9

doi:10.1371/journal.pone.0149757.t002
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➢ time to perform the Go, Turn and Return sub-tasks of the TUG, and total TUG time

➢ length of the COM trajectory, HD and DTW

The trajectories of each patient and healthy subject were compared with the reference trajec-
tory, defined as the mean of the healthy subjects’ trajectories which were time-resampled [16].

Trajectory length was calculated with the following equation 2

Trajectory length ¼
X ffiffiffiffiffiffiffiffiffi

ðxiþ1

q
� xiÞ2 þ ðyiþ1 � yiÞ2

HD corresponds to the geometric analysis of the trajectory. Each point of the considered
subject’s trajectory is assigned to the closest point of the reference trajectory and conversely,
each point of the reference trajectory is assigned to the closest point of the considered subject’s
trajectory (Fig 1). HD is the greatest of all the distances from a point in one set (A) to the clos-
est point in the other set (B). HD is thus sensitive to corner points.

HD was calculated with the following equation 3.

HD ðA;BÞ ¼ max fdðA;BÞ; dðB;AÞg

where d(A,B) and d(B,A) are the direct (minimum) Euclidean distances between two sets, A
and B [23].

The result is in cm. The greater the distance, the higher the deviation from the reference
trajectory.

DTW is a spatio-temporal analysis which corresponds to the path of cumulative distances
that minimize the warping cost (pair of matching points) of two time series, P and Q [42]. The
algorithm first calculates the distance between each point of the subject’s trajectory and refer-
ence trajectory and then searches an optimal matching (minimal cost) between sequence points

Fig 1. Explication of Hausdorff distance and dynamic time warping between a subject’s trajectory and
the reference trajectory for a TUG sub-task.

doi:10.1371/journal.pone.0149757.g001
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(a point of a sequence is associated with one or more points of the other sequence) (Fig 1).
DTW correspond to the optimal path that matches the point sequences.

DTW is calculated with the following equation 4.

DTW ðQ; PÞ ¼ min
Xk

k¼1

dðqik; pikÞ
" #

where d(qik, pik) is the Euclidean distance between two points in the Q and P series [43]. The
result is in arbitrary units. Higher values indicate a larger deviation from the reference trajectory.

HD and DTW are complementary parameters since HD relates to a particular point of the
trajectory (the greatest of all the distances, for the sub-task analyzed) while DTW considers the
trajectory as a whole (the sum corresponding to the optimal path between the two trajectories,
for the sub-task analyzed).

All parameters were calculated for the global TUG and for each sub-task using Matlab
(Mathworks, Inc.).

Subjects also underwent a clinical examination as detailed in Table 3.

Statistical analysis
Performance time, DTW and HDwere calculated for each sub-task of the TUG (Go, Turn and
Return) as well as the total trajectory. Trajectory length was computed for the total TUG trajec-
tory. As the parameters were not all normally distributed, medians and quartile ranges are pre-
sented and non-parametric tests were used. Mann-Whitney tests were used to compare patients
and healthy subjects, fallers and non-fallers and patients with right and left hemisphere stroke. A
Bonferroni correction was used (since four repeated comparisons were carried out) with an
adjusted p of 0.0125. A logistic regression was performed for each sub-task of the TUG to assess
the additional variance of the dependent measure (stroke/no stroke) accounted for by DTW and
HD above and beyond that accounted for by TUG time and nuisance variables (sex, age, body
mass index). DTW and HD were added together in the regression model. Correlations between
the BBS scores and trajectory parameters were tested with Spearman’s correlation for both the
patients with stroke and healthy subjects, and for each sub-task (p< 0.05 was considered as sig-
nificant). All analyses were performed using Statistica (version 7.1)

Results

Comparison of trajectory parameters between stroke patients and
healthy subjects
Results of the trajectory parameters are presented in Table 4. Fig 2 shows the trajectories of a
patient with stroke and a healthy subject. Trajectory length, HD and DTW of the total TUG

Table 3. Clinical examination.

Impairments and disabilities examined Scale

Spasticity (quadriceps, rectus femoris, hamstring and triceps
surae)

Modified Ashworth

Strength (hip, knee and ankle flexor and extensor) Medical Research Council

Sensation and proprioception of lower limb Nottingham Sensory Assessment

Activities of daily living Barthel index

Walking independence New Functional Ambulation Classification
score

Balance Berg Balance Scale

Balance confidence Activities-specific Balance Confidence
Scale

doi:10.1371/journal.pone.0149757.t003
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Table 4. Trajectory parameters [medians and interquartile ranges Q1;Q3] during the global trajectory and Go, Turn and Return sub-tasks of the
TUG for both groups.

Stroke group Healthy group

Global Go Turn Return Global Go Turn Return

HD (cm) 29.3 [21.9;33.3] 22.6
[17.1;28.5]

33.0
[25.4;42.2]

28.4
[22.1;37.4]

19.2
[17.5;23.9]*

15.1
[10.5;16.7]*

20.4
[18.7;26.8]*

22.8
[20.1;27.7]

DTW(arbitrary
unit)

12983
[10576;19958]

4438
[3373;6139]

5238
[4344;7844]

5298
[3561;7745]

9023
[7522;10969]*

3017
[2187;3379]*

2252
[1875;2638]*

4783
[3631;6326]

Trajectory length
(cm)

838,5
[817.7;864.5]

- -. - 750.1
[737.7;766.1]*

- - -

TUG performance
(time in sec)

19.4 [15.9;21.5] - - - 9.9 [9.5;11.5]* - - -

HD Hausdorff distance

DTW Dynamic time warping

TUG Timed Up and Go

* significant difference between Stroke group and Healthy group for the sub-task (p<0.05)

doi:10.1371/journal.pone.0149757.t004

Fig 2. Trajectory of a healthy subject and a patient with stroke.

doi:10.1371/journal.pone.0149757.g002
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test were significantly greater in the stroke group (respectively p = 0.000001, p = 0.0001,
p = 0.00004). HD and DTW were significantly greater in the stroke group during the Go
(respectively p = 0.00002, p = 0.0009) and Turn (respectively p = 0.0002, p = 0.000001) sub-
tasks. Both HD and DTW were greater in the patient group showing that, for a given sub-task,
they deviated from the reference trajectory both at an isolated point (assessed with HD) and
during the entire sub-task (assessed with DTW).

Additional information provided by the trajectory parameters
The logistic regressions showed that the variance increased for the Go sub-task when the trajec-
tory parameters were included. Indeed when all variables were included in the model the R2

was 0.56 and when the trajectory variables were not included (model with time and nuisance
variables) the R2 was 0.39. The results of the predictive factors of the logistic regression for Go
are presented in the appendix (S1 Table). For the Turn and Return sub-tasks, the trajectory
parameters did not provide additional information (not selected in the multivariate model,
p<0.05). Fig 3 presents the trajectory of two characteristic patients with similar performance
times but distinct trajectories, to illustrate the additional information provided by the locomo-
tor trajectory parameters.

Correlation between trajectory parameters and BBS score
There was a significant negative correlation between BBS score and trajectory length, HD and
DTW during the total TUG (r between -0.53 and -0.68, p<0.05,). BBS score was also signifi-
cantly correlated with DTW during the Turn (r = -0.6, p<0.05) but not with HD during this
sub-task. No correlations were found for Go and Return.

Fig 3. Trajectory of two characteristic patients with similar performance times (20.7 and 20.8s) but distinct trajectories.

doi:10.1371/journal.pone.0149757.g003
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Comparison of trajectory parameters between fallers and non-fallers
DTWwas significantly greater for fallers (n = 8) than non-fallers (n = 21) for the Go sub-task
only (p = 0.005), no differences were found for the Turn, Return or the total TUG. There were
no significant differences between fallers and non-fallers for HD and trajectory length during
the total TUG or each sub-task.

Comparison of trajectory parameters between patients with right and left
hemisphere stroke
There were no differences for the DTW and HD for the Go, the Turn, the Return, the total
TUG or for the total trajectory length between patients with right (n = 17) and left (n = 12)
hemisphere stroke (p>0.05).

Discussion
To our knowledge, this study is the first to analyze locomotor trajectories during oriented-gait
involving curved paths and obstacle circumvention in stroke patients. The aims were i) to ana-
lyze the locomotor trajectories of patients with stroke during the walking and turning sub-tasks
of the TUG using HD and DTW, and to compare them with healthy subjects; ii) to determine
whether trajectory parameters provide additional information to the conventional measure
(performance time); iii) to compare the trajectory parameters of fallers and non-fallers with
stroke and of patients with right and left hemisphere stroke and iv) to evaluate correlations
between trajectory parameters and BBS scores.

The results showed that, compared to healthy subjects, stroke patients had significantly lon-
ger total trajectories and larger deviations from the reference trajectory during the oriented-
gait to the cone (Go) and the turning (Turn) sub-tasks. Lamontagne et al (2010) recently also
found different locomotor trajectories in stroke patients compared to healthy subjects during
overground walking in an environment which provided optic flow [17].

The results of the present study suggest that stroke patients exhibit different locomotor tra-
jectories depending on the requirements of the sub-task. Differences in trajectory parameters
between the patients with stroke and the healthy subjects during the oriented gait to the cone
and the turn sub-tasks suggest that the perception of a visual target, explicitly associated with a
plan to circumnavigateit, impacted the gait trajectories of the patients with stroke for reasons
that remain to be determined.

Furthermore, the results of this study suggest that the analysis of locomotor trajectories is
an interesting approach to the analysis of gait in patients with stroke, providing additional
information to that of the conventional timed performance of specific locomotor tasks. The
assessment of trajectory parameters complements timed performance, providing a more com-
plete understanding of locomotor tasks in patients with stroke. This is supported by the results
of the logistic regression analysis. Further studies are needed to determine to what extent
patients with similar performance times differ in locomotor trajectory, and the factors that
influence these differences.

Longer and more deviated trajectories were significantly related to poor balance during the
turn sub-task. Moreover, the trajectories of the faller group were significantly more deviated
than those of the non-faller group during the oriented-gait to the cone (Go). The patients’ gait
parameters differed significantly from those of the healthy subjects during the oriented gait to
the cone and the Turn. These sub-tasks both challenge stability. In contrast, the Return
appeared to be less challenging since there were no significant differences between the parame-
ters of the patients and healthy subjects, or of the fallers and non-fallers. Thus the Go and Turn

Locomotor Trajectories in Stroke
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appear to be the most challenging sub-tasks of the TUG test. Hicheur et al (2007) also found
that “complex” locomotor trajectories (with a large turn amplitude) induce greater deviations
from the mean than “simple” trajectories (with a smaller amplitude turn) in healthy subjects
[16]. In the present study, the HD and DTW values of the stroke group were both greater than
the values of the healthy subjects during the Go and Turn sub-tasks, revealing that deviations
from the trajectory occurred throughout these sub-tasks and not only at an isolated point. It is
possible that these larger deviations of trajectories throughout the obstacle circumvention task
and the preceding phase compensate for instability. Our results are in accordance with these
obtained in other patient groups. Older adults also increase the spatial margin when walking
through apertures in comparison with young subjects [44]. Similarly, MacLellan and Patla
(2006) showed that the locomotor trajectories of healthy subjects are modified proactively and
retroactively when walking on a foam mat compared to overground. They suggested that these
modifications of the locomotor strategy probably minimize threats to stability [45]. Maintain-
ing a consistent but minimum spatial margin between an obstacle and the self has been sug-
gested as one of the dominant control parameters to maintain balance and avoid perturbation
[46]. However, the hypothesis that trajectory deviations could compensate for instability can-
not be affirmed by our results and further studies will be necessary to confirm or infirm this.

Finally, we expected to find differences in the trajectories of patients with right and left
hemisphere stroke since right hemisphere stroke may alter the perception of body verticality
[18]. However, our results showed that there were no differences, suggesting either that there
were no significant differences between our two groups of participants in the subjective vertical
(which we did not measure) or that alterations in the subjective vertical did not affect the loco-
motor trajectories during the TUG test in this sample of patients with moderate to good recov-
ery. Nevertheless this assumption should be tempered since the distribution of patients with
right and left hemisphere strokes was slightly asymmetrical (twelve patients with left stroke
and seventeen with right stroke).

Limits and perspectives
The patients included in this study had mild impairments; therefore caution must be taken
regarding generalization of the results. The lack of difference between patients with right and
left hemisphere stroke should also be interpreted with caution since we did not carry out a spe-
cific assessment of subjective vertical and cognitive functions relating to spatial perception (e.g.
hemi-spatial neglect). Further studies designed to assess the influence of perception on trajec-
tory would be interesting. The analysis of the trajectories of the faller patients was not our ini-
tial objective which explains why this sub-group was small. This limits the interpretation of the
data for the discrimination of fallers and non-fallers, however these preliminary results suggest
that the analysis of trajectory parameters may be a relevant approach to address this issue. Fur-
ther studies specifically designed to fulfil this objective are nevertheless necessary. It would also
be interesting to study whether locomotor trajectories are influenced by sensory perturbations
in patients with stroke. Moreover locomotor trajectory analysis could be an interesting
approach to assess the impact of medical treatment (such as botulinum toxin), surgical treat-
ment or rehabilitation on “real-life gait” instead of conventional straight-line gait analysis.

Conclusion
This study presents an innovative approach to the quantitative analysis of locomotor trajecto-
ries in patients with stroke during oriented-gait and obstacle circumvention, based on the
widely used TUG test. This approach complements timed performance since it objectively
quantifies locomotor trajectory and provides additional information regarding gait alterations
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in the presence of an obstacle. We evaluated parameters which quantified deviation from a ref-
erence trajectory and found that the trajectory of patients with stroke was more deviated than
that of healthy subjects during the turn and the phase preceding the turn. No differences were
found between patients with right and left hemisphere stroke. Comparison of faller and non-
faller patients also showed that trajectory parameters differed during the phase preceding the
turn. These results suggest that assessing the locomotor trajectory in addition to timed perfor-
mance during complex locomotor tasks such as those assessed during the TUG test (i.e prepar-
ing to circumnavigate an obstacle and turning) might be relevant in patients with stroke and
might also provide a basis for estimation of fall risk.

Supporting Information
S1 Table. Logistic regression for the Go sub-task of the TUG: predictive factors. Caption: 1�

reference value; OR odds ratio, CI confidence interval. NS non-significant
(DOCX)

Acknowledgments
The authors wish to thank all the participants for their kind participation. We would also like
to thank Johanna Robertson for her constructive criticism and for correction of the English.
Many thanks to Isabelle Vaugier and Ghilas Boussaid for their help with the statistical analysis.
This work was sustained by Assistance Publique—Hopitaux de Paris, Centre Innovations Clin-
ique Garches 1429, University of Versailles Saint Quentin en Yvelines and the Garches
foundation.

Author Contributions
Conceived and designed the experiments: CB NR DP. Performed the experiments: CB. Ana-
lyzed the data: CB DP. Contributed reagents/materials/analysis tools: CB DP AVH. Wrote the
paper: CB NR DP AVH DB. Designed the software used in analysis: DP.

References
1. Mendis S. Stroke disability and rehabilitation of stroke: World Health Organization perspective. Int J

Stroke. 2013; 8: 3–4. Available: http://www.ncbi.nlm.nih.gov/pubmed/23280261 doi: 10.1111/j.1747-
4949.2012.00969.x PMID: 23280261

2. Olney SJ, Griffin MP, McBride ID. Temporal, kinematic, and kinetic variables related to gait speed in
subjects with hemiplegia: a regression approach. Phys Ther. 1994; 74: 872–885. PMID: 8066114

3. Perry J. Gait Analysis: Normal and Pathological Function [Internet]. 1992. Available: http://books.
google.fr/books/about/Gait_Analysis.html?id=1Ogg11hOKMcC&pgis=1

4. Yavuzer G, Öken Ö, Elhan A, Stam HJ. Repeatability of lower limb three-dimensional kinematics in
patients with stroke. Gait Posture. 2008; 27: 31–35. PMID: 17257845

5. McGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional kinematic gait measure-
ments: A systematic review. Gait Posture. 2009; 29: 360–369. doi: 10.1016/j.gaitpost.2008.09.003
PMID: 19013070

6. Glaister BC, Bernatz GC, Klute GK, Orendurff MS. Video task analysis of turning during activities of
daily living. Gait Posture. 2007; 25: 289–294. doi: 10.1016/j.gaitpost.2006.04.003 PMID: 16730441

7. Courtine G, Schieppati M. Human walking along a curved path. I. Body trajectory, segment orientation
and the effect of vision. Eur J Neurosci. 2003; 18: 177–190. doi: 10.1046/j.1460-9568.2003.02736.x
PMID: 12859351

8. Vallis LA, McFadyen BJ. Locomotor adjustments for circumvention of an obstacle in the travel path.
Exp Brain Res. 2003; 152: 409–414. PMID: 12904936

9. Gérin-Lajoie M, Richards CL, McFadyen BJ. The negotiation of stationary and moving obstructions dur-
ing walking: anticipatory locomotor adaptations and preservation of personal space. Motor Control.
2005; 9: 242–269. PMID: 16239715

Locomotor Trajectories in Stroke

PLOS ONE | DOI:10.1371/journal.pone.0149757 February 19, 2016 12 / 14



125

Chapitre 1: ContexteChapitre 3: Partie expérimentale

10. Hollands KL, Hollands MA, Zietz D, Wing AM, Wright C, van Vliet P. Kinematics of turning 180 degrees
during the timed up and go in stroke survivors with and without falls history. Neurorehabil Neural Repair.
2010; 24: 358–367. doi: 10.1177/1545968309348508 PMID: 19822720

11. Duval K, Luttin K, Lam T. Neuromuscular strategies in the paretic leg during curved walking in individu-
als post-stroke. J Neurophysiol. 2011; 106: 280–290. doi: 10.1152/jn.00657.2010 PMID: 21562197

12. Bonnyaud C, Pradon D, Vuillerme N, Bensmail D, Roche N. Spatiotemporal and Kinematic Parameters
Relating to Oriented Gait and Turn Performance in Patients with Chronic Stroke. PLoS One. Public
Library of Science; 2015; 10: e0129821. doi: 10.1371/journal.pone.0129821 PMID: 26091555

13. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly per-
sons. J AmGeriatr Soc. 1991; 39: 142–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/1991946
PMID: 1991946

14. Ng SS, Hui-Chan CW. The timed up & go test: Its reliability and association with lower-limb impairments
and locomotor capacities in people with chronic stroke. Arch Phys Med Rehabil. 2005; 86: 1641–1647.
PMID: 16084820

15. Flansbjer UB, Holmbäck AM, DownhamD, Patten C, Lexell J. Reliability of gait performance tests in
men and women with hemiparesis after stroke. J Rehabil Med. 2005; 37: 75–82. doi: 10.1080/
16501970410017215 PMID: 15788341

16. Hicheur H, PhamQ-C, Arechavaleta G, Laumond J-P, Berthoz A. The formation of trajectories during
goal-oriented locomotion in humans. I. A stereotyped behaviour. Eur J Neurosci. 2007; 26: 2376–90.
doi: 10.1111/j.1460-9568.2007.05836.x PMID: 17953625

17. Lamontagne A, Fung J, McFadyen B, Faubert J, Paquette C. Stroke affects locomotor steering
responses to changing optic flow directions. Neurorehabil Neural Repair. 2010; 24: 457–468. doi: 10.
1177/1545968309355985 PMID: 20067950

18. Perennou DA, Mazibrada G, Chauvineau V, Greenwood R, Rothwell J, Gresty MA, et al. Lateropulsion,
pushing and verticality perception in hemisphere stroke: a causal relationship? Brain. 2008; 131: 2401–
2413. doi: 10.1093/brain/awn170 PMID: 18678565

19. Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh EJ. Querying and mining of time series data:
experimental comparison of representations and distance measures. Proc VLDB Endow. 2008; 1:
1542–1552.

20. Etienne L. Motifs spatio-temporels de trajectoires d ’ objets mobiles, de l ’ extraction à la détection de
comportements inhabituels. 2011;

21. Di Brina C, Niels R, Overvelde A, Levi G, Hulstijn W. Dynamic time warping: A newmethod in the study
of poor handwriting. HumMov Sci. 2008; 27: 242–255. doi: 10.1016/j.humov.2008.02.012 PMID:
18407363

22. Psarrou A, Gong S, Walter M. Recognition of human gestures and behaviour based on motion trajecto-
ries. Image Vis Comput. 2002; 20: 349–358. doi: 10.1016/S0262-8856(02)00007-0

23. Laxhammar R, Falkman G. Sequential Conformal Anomaly Detection in trajectories based on Haus-
dorff distance. 14th Int Conf Inf Fusion. 2011; 1–8.

24. Shumway-Cook a, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling
older adults using the Timed Up & Go Test. Phys Ther. 2000; 80: 896–903. PMID: 10960937

25. Persson CU, Hansson PO, Sunnerhagen KS. Clinical tests performed in acute stroke identify the risk of
falling during the first year: Postural stroke study in Gothenburg (Postgot)*. J Rehabil Med. 2011; 43:
348–353. doi: 10.2340/16501977-0677 PMID: 21267528

26. Schoene D, Wu SMS, Mikolaizak a. S, Menant JC, Smith ST, Delbaere K, et al. Discriminative ability
and predictive validity of the timed up and go test in identifying older people who fall: Systematic review
and meta-analysis. J AmGeriatr Soc. 2013; 61: 202–208. doi: 10.1111/jgs.12106 PMID: 23350947

27. Faria CDCDM, Teixeira-Salmela LF, Nadeau S. Effects of the direction of turning on the timed up & go
test with stroke subjects. Top Stroke Rehabil. 2009; 16: 196–206. doi: 10.1310/tsr1603-196 PMID:
19632964

28. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for
the social, behavioral, and biomedical sciences. Behav Res Methods. 2007; 39: 175–191. doi: 10.
3758/BF03193146 PMID: 17695343

29. Arnadottir S a, Mercer VS. Effects of footwear on measurements of balance and gait in women between
the ages of 65 and 93 years. Phys Ther. 2000; 80: 17–27. PMID: 10623957

30. Roy G, Nadeau S, Gravel D, Malouin F, McFadyen BJ, Piotte F. The effect of foot position and chair
height on the asymmetry of vertical forces during sit-to-stand and stand-to-sit tasks in individuals with
hemiparesis. Clin Biomech. 2006; 21: 585–593. doi: 10.1016/j.clinbiomech.2006.01.007

Locomotor Trajectories in Stroke

PLOS ONE | DOI:10.1371/journal.pone.0149757 February 19, 2016 13 / 14



126

Chapitre 1: ContexteChapitre 3: Partie expérimentale

31. Brunt D, Greenberg B, Wankadia S, Trimble M a., Shechtman O. The effect of foot placement on sit to
stand in healthy young subjects and patients with hemiplegia. Arch Phys Med Rehabil. 2002; 83: 924–
929. doi: 10.1053/apmr.2002.3324 PMID: 12098151

32. GilleardW, Crosbie J, Smith R. Rising to stand from a chair: Symmetry, and frontal and transverse
plane kinematics and kinetics. Gait Posture. 2008; 27: 8–15. doi: 10.1016/j.gaitpost.2006.11.002
PMID: 17166719

33. Frykberg GE, Åberg AC, Halvorsen K, Borg J, Hirschfeld H. Temporal Coordination of the Sit-to-Walk
Task in Subjects With Stroke and in Controls. Arch Phys Med Rehabil. the American Congress of Reha-
bilitation Medicine and the American Academy of Physical Medicine and Rehabilitation; 2009; 90:
1009–1017. doi: 10.1016/j.apmr.2008.12.023 PMID: 19480878

34. Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level
walking. J Orthop Res. 1990; 8: 383–92. doi: 10.1002/jor.1100080310 PMID: 2324857

35. Bell AL, Pedersen DR, Brand R a. A comparison of the accuracy of several hip center location predic-
tion methods. J Biomech. 1990; 23: 617–621. doi: 10.1016/0021-9290(90)90054-7 PMID: 2341423

36. Dempster WT. Space requirements of the seated operator. WADC Technical Report. Wright-Patterson
Air Force Base, Dayton, Ohio; 1955.

37. Cruz TH, Lewek MD, Dhaher YY. Biomechanical impairments and gait adaptations post-stroke: Multi-
factorial associations. J Biomech. 2009; 42: 1673–1677. doi: 10.1016/j.jbiomech.2009.04.015 PMID:
19457488

38. Winter DA, Sidwall HG, Hobson DA. Measurement and reduction of noise in kinematics of locomotion.
J Biomech. 1974; 7: 157–159. doi: 10.1016/0021-9290(74)90056-6 PMID: 4837552

39. Barre A, Armand S. Biomechanical ToolKit: Open-source framework to visualize and process bio-
mechanical data. Comput Methods Programs Biomed. 2014; 114: 80–87. doi: 10.1016/j.cmpb.2014.
01.012 PMID: 24548899

40. Thigpen MT, Light KE, Creel GL, Flynn SM. Turning difficulty characteristics of adults aged 65 years or
older. Phys Ther. 2000; 80: 1174–1187. PMID: 11087304

41. Faria CD, Teixeira-Salmela LF, Silva EB, Nadeau S. Expanded timed up and go test with subjects with
stroke: Reliability and comparisons with matched healthy controls. Arch Phys Med Rehabil. Elsevier
Inc.; 2012; 93: 1034–1038. doi: 10.1016/j.apmr.2011.11.025 PMID: 22381595

42. Berndt, D.J., Clifford J. Using dynamic time warping to find patterns in time series. In AAAI Working
Notes of the Knowledge Discovery in DatabasesWorkshop. 1994.

43. Fu TC. A review on time series data mining. Eng Appl Artif Intell. 2011; 24: 164–181. doi: 10.1016/j.
engappai.2010.09.007

44. Hackney AL, Cinelli ME. Older adults are guided by their dynamic perceptions during aperture crossing.
Gait Posture. Elsevier B.V.; 2013; 37: 93–97. doi: 10.1016/j.gaitpost.2012.06.020 PMID: 22818118

45. MacLellan MJ, Patla AE. Adaptations of walking pattern on a compliant surface to regulate dynamic sta-
bility. Exp Brain Res. 2006; 173: 521–530. doi: 10.1007/s00221-006-0399-5 PMID: 16491406

46. Higuchi T. Visuomotor control of human adaptive locomotion: Understanding the anticipatory nature.
Front Psychol. 2013; 4: 1–9.

Locomotor Trajectories in Stroke

PLOS ONE | DOI:10.1371/journal.pone.0149757 February 19, 2016 14 / 14



127

Chapitre 1: ContexteChapitre 3: Partie expérimentale

Les résultats de cette étude ont montré que, comparativement aux sujets sains, la trajectoire 
des patients hémiparétiques était plus longue globalement et, plus déviée de la trajectoire de référence 
lors du demi-tour et de la phase de marche orientée Aller, précédant le contournement du cône. Notre 
hypothèse était validée pour ces deux phases, mais aucune différence n’a été retrouvée entre les deux 
populations pour la phase retour. 

D’autre part, une déviation plus grande était retrouvée au cours de la phase aller pour les patients 
chuteurs comparativement aux patients non chuteurs, mais aucune différence n’était retrouvée entre 
les patients ayant été victimes d’un AVC hémisphérique droit ou gauche. 

Par ailleurs, une déviation plus grande de la trajectoire était associée à un faible score à la BBS 
lors de la phase du demi-tour.

Cette étude montre l’intérêt d’analyser les trajectoires locomotrices qui peuvent être, chez 
les patients hémiparétiques, plus ou moins déviées d’une trajectoire de référence selon l’activité 
locomotrice concernée. De plus, certains patients ayant la même performance chronométrique au TUG 
présentent une trajectoire locomotrice différente. Ceci confirme l’hypothèse selon laquelle l’organisation 
des patients peut être différente de celle des sujets sains lors des phases de navigation du TUG. Ces 
résultats suggèrent également que les patients hémiparétiques et les sujets sains pourraient utiliser des 
stratégies différentes pour réaliser les tâches de navigation lors de ce test.  

A l’issue de cette étude, il semble intéressant d’envisager les facteurs cliniques explicatifs de ces 
déviations de trajectoire chez les patients hémiparétiques.
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Résultats complémentaires : Corrélations entre les données cliniques des patients hémiparétiques 
et les paramètres de trajectoire

Contexte

L’étude 4 montrait une déviation de la trajectoire locomotrice des patients hémiparétiques par 
rapport à une trajectoire de référence (définie par une trajectoire moyenne de sujets sains) lors des phases 
de marche aller et de demi-tour du TUG. Cette étude mettait également en évidence l’existence d’une 
corrélation entre les déficits d’équilibration des patients et la déviation de leur trajectoire locomotrice lors 
de la phase du demi-tour. Il est par ailleurs connu que les performances de marche sont dépendantes 
des déficits sensitivo-moteurs chez les patients hémiparétiques. Les troubles sensitifs, la présence de 
spasticité, les déficits moteurs et la confiance que les patients ont en leur équilibre peuvent également 
expliquer les déviations de trajectoires lors du TUG.

L’objectif de cette analyse complémentaire était d’étudier les liens entre les paramètres de la 
trajectoire locomotrice au cours des phases aller, demi-tour et retour du TUG et au cours du TUG 
complet et, les données issues du bilan clinique chez les patients hémiparétiques. Nous émettions 
l’hypothèse que les patients présentant les atteintes cliniques les plus sévères auraient le plus de 
déviations de leur trajectoire locomotrice. 

Méthode 

Les paramètres de déviation de la trajectoire (DTW et DH) et la longueur totale de la trajectoire 
des vingt-neuf patients hémiparétiques au cours des phases de marche orientée et de demi-tour du 
TUG (réalisé en condition standardisée) ont été corrélés à la spasticité, à la commande motrice, à 
la sensibilité superficielle et profonde, à la confiance que le patient a en son équilibre lors d’activités 
diverses et à  la peur de chuter de ces mêmes patients. 

Les paramètres cliniques étudiés étaient les suivants : 

- La spasticité a été évaluée par l’échelle d’Ashworth modifiée et le score global correspondait à 
la somme des scores obtenus lors de l’évaluation des muscles fléchisseurs et extenseurs de genou et 
de cheville du côté parétique. 

- La commande motrice a été évaluée par l’échelle Medical Research Council (MRC) et le score 
global correspondait à la somme des scores obtenus lors de l’évaluation des muscles  fléchisseurs et 
extenseurs de hanche, de genou et de cheville du côté parétique. 

- La sensibilité superficielle a été évaluée sur la plante de pied et la sensibilité profonde a été 
évaluée au gros orteil par le Nottigham sensory assessment. 

- La confiance du patient en son équilibre a été évaluée par l’Activities-specific Balance Confidence 
(ABC). 

Les paramètres de trajectoire DTW et DH ont été quantifiés selon la même méthode que celle 
décrite dans l’article précédent 
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Les paramètres de trajectoire des vingt-neuf patients hémiparétiques au cours des phases 
de marche orientée et de demi-tour du TUG (réalisé en condition standardisée) ont été corrélés à la 
spasticité, à la commande motrice, à la sensibilité superficielle et profonde, au score à la BBS et à la 
confiance que le patient a en son équilibre lors d’activités diverses. Les données n’étant pas toutes 
continues, des corrélations de Spearman ont été effectuées avec un seuil de significativité retenu à 
p<0.01 (correction effectuée : 0.05 / 5 paramètres) et la force de la corrélation était interprétée d’après 
Domholdt (Domholdt, 2000).  

 Résultats 

Les scores aux évaluations cliniques ont été précédemment présentés dans le tableau 5. Les détails 
des scores moteurs, sensitifs et fonctionnels sont présentés dans les annexes 2, 3 et 4. Les résultats 
des corrélations sont présentés dans le tableau 7. 

Tableau 7 : Corrélations entre les paramètres  DH et DTW de déviation de la trajectoire pour chaque 
phase analysée et les données cliniques des patients hémiparétiques. 

Somme                     
spasticité Somme MRC Pression 

plante pied
Sensibilité 
profonde ABC

DH trajectoire totale -0,18 -0,17 -0,31 -0,37 -0,37

DTW trajectoire totale -0,12 -0,25 -0,28 -0,28 -0,41

Longueur trajectoire totale 0,13 -0,34 -0,39 -0,34 -0,32

DH Aller -0,13 -0,04 -0,29 -0,17 0,13

DTW Aller -0,08 -0,03 -0,08 -0,09 -0,03

DH Demi-tour -0,13 -0,17 -0,56* -0,45 -0,29

DTW Demi-tour -0,01 -0,26 -0,48* -0,42 -0,32

DH Retour -0,33 0,03 -0,41 -0,40 -0,41

DTW Retour -0,24 -0,12 -0,32 -0,36 -0,40

DH distance de Hausdorff 
DTW déformation temporelle dynamique 
La somme des scores de spasticité correspond aux muscles quadriceps, ischio-jambiers et triceps sural (évalué avec l’échelle 
d’Ashworth modifiée) 
La somme des scores de MRC (motricité volontaire) correspond aux fléchisseurs et extenseurs de la hanche, du genou et de la 
cheville (évalués avec l’échelle Medical Research Council, MRC) 
La pression de la plante de pied et la sensibilité profonde (des orteils dans ce tableau) ont été évaluées avec le Nottigham 
sensory assessment 
BBS, Berg Balance Scale, évaluant l’équilibre (score 0/ 56) 
ABC, Activities-specific Balance Confidence, évaluant la confiance que le patient a en son équilibre au cours de diverses 
activités quotidiennes (score 0/ 100%) 
* Corrélation significative à p<0.05 (corrélation de Spearrman)
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Les déficits de sensibilité superficielle étaient significativement négativement corrélés avec la  
distance de Hausdorff au Demi-tour (corrélation modérée selon Domholdt) et avec le DTW au demi-tour 
(corrélation faible selon Domholdt) (Domholdt, 2000) Les autres données cliniques (sensibilité profonde, 
motricité volontaire, spasticité et confiance du patient en son équilibre) n’étaient pas significativement 
corrélées avec les paramètres de trajectoire. 

Précisons que la corrélation entre la déviation de la trajectoire et les troubles sensitifs superficiels 
ne concernait que la phase du demi-tour et pas les phases de marche orientée.

Discussion  

Notre hypothèse d’une déviation plus importante de la trajectoire locomotrice pour les patients 
présentant les anomalies cliniques les plus importantes était validée pour les scores de sensibilité 
superficielle mais ne l’était pas pour les scores de motricité volontaire, de spasticité et de confiance en 
son équilibre. Ces facteurs cliniques accompagnent les déficits d’équilibration soulignés dans l’étude 4 
pour expliquer la déviation de trajectoire des patients hémiparétiques. Ainsi une déviation plus grande 
était associée à un faible score à la BBS lors de la phase du demi-tour. La trajectoire au cours de 
cette phase de demi-tour apparait donc influencée par les capacités d’équilibre des patients, elles-
mêmes probablement en rapport avec les déficits de la sensibilité superficielle alors que les déficits de la 
sensibilité profonde, de la motricité volontaire et la spasticité ne semblent pas intervenir. Rappelons que 
la précédente étude complémentaire montrait une association entre les paramètres biomécaniques de 
stabilité et le score clinique des capacités d’équilibration sans mettre en exergue un symptôme sensori-
moteur particulier. La trajectoire du demi-tour lors de la tâche de navigation apparait donc influencée 
par la stabilité et particulièrement par les déficits sensitifs superficiels bien que ces symptômes ne 
s’avèrent pas spécifiquement impliqués dans la gestion des paramètres de déplacement du COM. 
L’origine clinique de ces liens entre la trajectoire et la stabilité reste par conséquent à mieux documenter.

Par ailleurs, cette phase du demi-tour était également concernée par l’association entre les 
paramètres de stabilité explicatifs de la performance (% de phase du cycle de marche) et les déficits 
de la motricité volontaire (résultats de l’étude 1). Au final, la stabilité apparait être l’élément central de 
la régulation du demi-tour lors du TUG avec des troubles de la sensibilité superficielle influençant la 
trajectoire locomotrice des patients et les troubles de la motricité volontaire influençant leur performance.
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L’objectif principal de ce travail était d’évaluer et de quantifier par analyse tridimensionnelle, chez 
des  patients hémiparétiques, une tâche de navigation impliquant des déplacements locomoteurs 
fréquemment effectués dans la vie quotidienne. Le test du Timed Up and Go (TUG), comprenant 
notamment des phases de marche orientée vers un but et la réalisation d’un demi-tour, répondait 
particulièrement à cette prise en compte des déplacements quotidiens du patient dans son environnement. 
Ce travail montre tout d’abord qu’une évaluation instrumentée du TUG par système opto-électronique 
est une approche possible pour l’analyse quantifiée biomécanique des phases de marche et du demi-
tour du TUG de patients hémiparétiques. Cette analyse apporte par ailleurs de nouvelles données, se 
positionnant à la jonction de deux approches routinières conventionnelles complémentaires  : d’une 
part le test du TUG, une évaluation clinique impliquant des tâches variées de locomotion rencontrées 
au quotidien, mais n’aboutissant qu’à une performance chronométrique globale et d’autre part, l’AQM, 
une analyse instrumentale quantifiée aboutissant à de multiples paramètres évalués de manière précise 
et permettant une analyse approfondie du comportement biomécanique locomoteur du patient, 
mais n’impliquant qu’une marche en ligne droite sans but à atteindre, ce qui correspond peu aux 
déplacements effectués au quotidien.

Les 4 études de ce travail permettent une meilleure compréhension du comportement 
biomécanique des patients hémiparétiques comparativement à des sujets sains au cours de tâches de 
navigation inclues dans le TUG (phases de marche orientée Aller et Retour et phase du Demi-tour). Les 
paramètres biomécaniques analysés étaient les paramètres spatio-temporels, la cinématique articulaire, 
le MFC, les déplacements médio-latéraux et verticaux du COM, la longueur totale de la trajectoire du 
COM et la déviation de la trajectoire du COM. Les résultats de ces différentes études montrent que ces 
paramètres étaient i) différents entre les patients hémiparétiques et les sujets sains, mais également ii) 
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entre les différentes phases du TUG, pour une même population et entre les deux populations. Ainsi 
la nature de la tâche locomotrice impliquait des spécificités pour chacune des populations étudiées. 
L’analyse des paramètres biomécaniques a ainsi permis de caractériser l’organisation des patients 
hémiparétiques par rapport aux sujets sains et d’envisager la ou les stratégie(s) mise(s) en place par ces 
patients pour effectuer ces tâches de navigation.

Dans un premier temps les éléments permettant de caractériser l’organisation des patients 
hémiparétiques seront abordés au moyen de critères de performance, de critères explicatifs de 
cette performance et de critères organisationnels. Dans la seconde partie de cette discussion, une 
interprétation de la ou des stratégie(s) mise(s) en place par les patients hémiparétiques lors de la 
réalisation des tâches de navigation sera proposée. Enfin, les intérêts cliniques issus de ce travail seront 
présentés.

I  Caractérisation de l’organisation 

I . 1  Critères de performance

	 Parmi les paramètres biomécaniques analysés, deux d’entre eux sont représentatifs de la 
performance des participants lors des différentes tâches du TUG  : la performance chronométrique 
et la longueur totale de la trajectoire locomotrice. Le TUG est un test clinique, rapide de passation, 
dont la performance correspond à la durée d’exécution de l’ensemble des activités le composant 
(Podsiadlo and Richardson, 1991), (Flansbjer et al., 2005). Cette performance chronométrique lors du 
TUG est reconnue aujourd’hui comme un bon indicateur de la fonction locomotrice (Ng and Hui-Chan, 
2005), (Flansbjer et al., 2005). Les résultats de nos études mettent en évidence une performance 
chronométrique réduite chez les patients hémiparétiques comparativement aux sujets sains, pour la 
totalité du TUG et pour chacune des phases analysées. Ces résultats confirment ceux de précédentes 
études (Ng and Hui-Chan, 2005), (Hollands et al., 2010), (Faria et al., 2012).

La longueur totale de la trajectoire du COM lors du TUG traduit la distance totale parcourue par 
les participants. Nos résultats montrent une longueur significativement plus importante pour les patients 
hémiparétiques par rapport aux sujets sains, avec en moyenne 1 mètre supplémentaire parcouru 
(soit environ +13%). Cette donnée nous semble intéressante, tout comme la distance de marche 
régulièrement évaluée chez les patients hémiparétiques en routine clinique lors d’une marche en ligne 
droite, en complément de l’évaluation de la vitesse (Eng and Fang Tang, 2007), (Dunn et al., 2015). 
Ainsi, nos résultats montrent, pour la première fois, qu’un test rapide de passation, le TUG, permet 
de mettre en évidence une augmentation de la distance de marche chez des patients hémiparétiques 
alors que la littérature souligne la diminution de la distance parcourue par ces patients lors du test de 6 
minutes en ligne droite (Dunn et al., 2015). Précisons néanmoins que les distances obtenues à l’issue 
de ces tests sont complémentaires explorant des éléments différents avec une consigne de parcourir le 
plus de distance possible pour le test de 6 minutes et, évaluer la distance spontanée lors d’une tâche 
de navigation à vitesse de confort avec un point de départ et un point d’arrivée imposés pour le TUG.

Les résultats des patients hémiparétiques montrent une forte corrélation positive entre ces deux 
paramètres de performance que sont la durée de la tâche et la distance parcourue (r=0.79, p<0.05). 
Ainsi, la longueur de la trajectoire était d’autant plus importante que les patients avaient une durée 
d’exécution du TUG importante. L’analyse des autres paramètres biomécaniques étudiés va nous 
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permettre de mieux comprendre les mécanismes impliqués dans cette performance. On peut par 
exemple s’interroger sur la cause de l’augmentation de la longueur de la trajectoire (distance parcourue) 
chez les patients hémiparétiques alors que la tâche impose un point départ, un point d’arrivée et une 
cible située à 3 mètres. On peut également se demander par quels mécanismes les patients aboutissent 
à leur performance chronométrique et s’ils mettent en place une stratégie particulière en lien avec les 
troubles qu’ils présentent. 

La performance chronométrique étant validée et reconnue comme le critère d’évaluation de la 
performance lors du TUG (Podsiadlo and Richardson, 1991), (Flansbjer et al., 2005), nous avons fait 
le choix de l’utiliser comme le critère de performance principal dans cette discussion (et dans les 2 
premières études relatives à la performance lors du TUG). 

I . 2  Critères explicatifs

	 La première étape de la compréhension des mécanismes aboutissant à la performance 
chronométrique des patients hémiparétiques est de mettre en évidence les paramètres cinématiques 
majoritairement impliqués dans chacune des tâches de navigation du TUG. La mise en évidence de ces 
paramètres chez les patients hémiparétiques pourrait permettre de mieux comprendre leur organisation 
lors les tâches de navigation du TUG. Cette même analyse chez les sujets sains pourrait permettre de 
déterminer si l’organisation de ces deux populations repose sur des mécanismes similaires ou différents 
et, s’ils sont similaires, de déterminer si leur modulation respective est identique ou différente.

I . 2 .1  Paramètres spatio-temporels et de la cinématique articulaire explicatifs de la 
performance pendant les phases de marche orientée

Pour les patients hémiparétiques et les sujets sains, les mêmes paramètres spatio-temporels 
étaient les plus explicatifs de la performance des phases de marche orientée vers un but (un cône à 
contourner ou une chaise pour s’y asseoir). Ainsi, la longueur de pas et la cadence, expliquaient la 
variance de la performance chronométrique pour les deux populations, bien que la modulation de la 
longueur de pas différait d’une population à l’autre (résultats des études 1 et 2). Ces résultats mettent 
donc en évidence une performance chronométrique diminuée aux phases de marche orientée chez 
les patients hémiparétiques par rapport aux sujets sains, expliquée non pas par une différence des 
paramètres cinématiques mis en jeu mais par une modulation différente des mêmes mécanismes. La 
cadence et la longueur de pas étaient ainsi modulées différemment pour assurer la meilleure performance 
chronométrique possible lors des tâches de marche orientée. La vitesse de marche étant le produit de 
la cadence et de la longueur de pas, il apparait légitime que ces paramètres soient explicatifs de la 
performance chronométrique des phases de marche orientée du TUG. Ce résultat est par conséquent 
en accord avec de précédentes études ayant mis en évidence un lien entre la vitesse de marche et la 
performance chronométrique globale lors du TUG (Ng and Hui-Chan, 2005), (Flansbjer et al., 2005). 

Notons qu’aucun paramètre de la cinématique articulaire étudié ne s’est avéré significativement 
explicatif de la performance. Pourtant la majorité de ces paramètres était réduits chez les patients 
hémiparétiques comparativement aux sujets sains lors des différentes phases du TUG et, plusieurs 
études ont souligné l’existence de liens entre la vitesse de marche en ligne droite et la cinématique 
articulaire chez les patients hémiparétiques (Kim and Eng, 2004), (Lamontagne and Fung, 2004). 
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Précisons cependant que les paramètres cinématiques articulaires analysés dans nos études ne l’ont 
été que dans le plan sagittal, ce qui pourrait constituer une limite. En effet, on ne peut exclure que des 
paramètres cinématiques analysables dans d’autres plans puissent interférer avec la performance aux 
différentes phases du TUG chez des patients hémiparétiques. Ainsi la cinématique d’abduction/adduction 
et de rotation de hanche est connue pour jouer un rôle non négligeable dans la vitesse de marche des 
patients hémiparétiques (Kim and Eng, 2004). Il apparait donc qu’une analyse complémentaire de 
ces paramètres pourrait s’avérer intéressante pour encore mieux comprendre comment les patients 
hémiparétiques modulent leur vitesse et donc leur performance. D’autre part, notre méthodologie ne 
permettait pas l’étude de la cinétique, qui semble aussi jouer un rôle important dans la vitesse de 
marche. Le moment en flexion de hanche et les puissances articulaires à la hanche, au genou et à la 
cheville parétique sont également connus pour être significativement corrélés avec la vitesse de marche 
chez les patients hémiparétiques (Olney et al., 1994), (Kim and Eng, 2004). Il en ressort donc qu’une 
analyse complémentaire des paramètres cinétiques de marche lors de la réalisation du TUG pourrait 
également contribuer à mieux appréhender la manière dont les patients hémiparétiques modulent leur 
performance lors des différentes phases de ce test.

I . 2 .2  Paramètres spatio-temporels et de la cinématique articulaire explicatifs de la 
performance pendant la phase du demi-tour

Les paramètres explicatifs de la performance lors de la phase de demi-tour par contournement d’un 
obstacle chez des patients hémiparétiques étaient le pourcentage du cycle de marche passé en phase 
de simple appui du côté parétique et le pourcentage de phase oscillante du côté non-parétique. Chez 
les sujets sains, en revanche, aucun paramètre n’était spécifiquement explicatif de la performance lors 
de cette phase du demi-tour. Nos résultats mettent donc en évidence une performance chronométrique 
diminuée lors de la phase du demi-tour chez les patients hémiparétiques par rapport aux sujets sains, 
expliquée par la mise en jeu de paramètres cinématiques spécifiques.

Le pourcentage de simple appui du côté parétique et le pourcentage de phase oscillante du côté 
non-parétique, explicatifs de la performance chez les patients hémiparétiques, sont reconnus comme 
étant le reflet de la stabilité d’un sujet (Lincoln A., 2006), (Suzuki et al., 1999). Ces résultats indiquent, 
par conséquent, l’importance de l’équilibration pour les patients hémiparétiques lors de cette phase 
de demi-tour. Pour les sujets sains, des études complémentaires pourraient s’avérer pertinentes pour 
tenter de mieux comprendre les mécanismes utilisés par ces sujets pour assurer une performance 
lors de la phase de demi-tour. La comparaison de la tâche à vitesse lente et à vitesse rapide pourrait 
possiblement mettre en évidence des paramètres explicatifs, ce qui nous renseignerait sur l’organisation 
des sujets sains.

A l’instar des phases de marche orientée, notons qu’aucun paramètre de la cinématique articulaire 
n’était explicatif de la performance chronométrique de la phase de demi-tour. Une réduction de la majorité 
des paramètres de la cinématique articulaire était pourtant observée chez les patients hémiparétiques 
comparativement aux sujets sains, excepté le pic d’extension de hanche, le pic de flexion de genou et le 
pic de flexion plantaire de cheville du côté non-parétique, augmentés chez les patients hémiparétiques. 
Le fait que le côté non-parétique corresponde à l’extérieur de la courbe lors du demi-tour (consigne de 
tourner du côté parétique) pourrait expliquer cette majoration d’amplitude pour le membre inférieur situé 
à l’extérieur. Cependant la consigne était la même pour les sujets sains (consigne de tourner du côté 
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non-dominant) et nos résultats montrent que les amplitudes de ces paramètres étaient supérieures pour 
le côté non-parétique des patients hémiparétiques comparativement aux amplitudes du côté dominant 
des sujets sains. L’hypothèse d’une augmentation de ces paramètres du côté non-parétique pour 
compenser les restrictions d’amplitudes du côté parétique afin de maintenir la meilleure performance 
possible peut être émise. De plus, ces trois paramètres exagérés du côté non-parétique lors du demi-
tour sont connus comme particulièrement incriminés lors d’une marche en courbe effectuée par des 
patients hémiparétiques, que le membre parétique soit en intérieur ou en extérieur de courbe (Duval 
et al., 2011). D’autre part, ces phénomènes de compensation par le côté non-parétique des déficits 
du côté parétique pour une marche efficiente chez les patients hémiparétiques ont préalablement été 
rapportés (Raja et al., 2012). En effet, une exagération de la flexion de hanche et de genou, de la flexion 
plantaire de cheville, de la propulsion a été observée du côté non-parétique par rapport à des sujets 
sains marchant à la même vitesse lors d’une marche en ligne droite (Hutin et al., 2012), (Chen et al., 
2005), (Raja et al., 2012). Ce phénomène de compensation du membre parétique par le membre non-
parétique semble donc indépendant de la tâche locomotrice. De plus, ces trois paramètres sont connus 
pour être associés à la vitesse de marche en ligne droite chez les patients hémiparétiques (Lamontagne 
and Fung, 2004), (Nadeau et al., 1999b). Précisons que nos résultats montraient une augmentation 
de ces paramètres du côté non-parétique lors du demi-tour mais que seul le pic de flexion genou du 
côté non-parétique était augmenté lors des phases de marche orientée, par rapport aux sujets sains. Il 
semblerait donc que des stratégies de compensation par le côté non-parétique existent lors de tâches 
de navigation, déjà identifiées lors de la marche en ligne droite, mais que les modalités de celles-ci 
diffèrent selon la nature de la tâche.

Pour conclure, les critères explicatifs de la performance chronométrique pointent une 
organisation spécifique de la tâche considérée, pour les patients hémiparétiques et pour 
les sujets sains (pour une population donnée, les paramètres explicatifs sont différents 
selon la tâche considérée). 

D’autre part, la performance chronométrique et la plupart des paramètres 
cinématiques sont diminués chez les patients hémiparétiques par rapport aux sujets sains 
pour les 3 phases de navigation du TUG (marche orientée à l’aller et au retour et demi-
tour). Cependant, cette réduction de performance commune aux 3 phases ne s’explique 
pas de la même manière, mais de façon spécifique selon la tâche considérée (pour une 
tâche donnée, les paramètres explicatifs sont différents selon la population). Ainsi les 
tâches de marche orientée vers une cible étaient contrôlées par les mêmes paramètres 
(bien que modulés de façon différente) chez les patients hémiparétiques et les sujets 
sains ; à l’inverse la tâche de demi-tour par contournement d’un obstacle impliquait une 
organisation spécifique, différente pour les patients hémiparétiques par rapport aux sujets 
sains.
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I . 3  Critères organisationnels

La seconde étape de la compréhension des mécanismes impliqués dans la performance 
chronométrique des patients hémiparétiques repose sur l’analyse de l’organisation globale utilisée pour 
les deux populations étudiées. Cette organisation globale des patients peut être appréhendée par 
l’étude des déplacements du COM traduisant les critères de stabilité et de trajectoire locomotrice et par 
l‘étude du MFC (résultant de la cinématique), reflet du critère de stabilité.

I . 3 .1  Stabilité 

I . 3 .1 .1  Pendant les phases de marche orientée

	 Les patients hémiparétiques présentaient des déplacements médio-latéraux du COM plus 
importants que les sujets sains lors des phases de marche orientée. Ceci traduit une difficulté à maintenir 
la stabilité pour les patients, comme le suggère la littérature (Chou et al., 2004), (Catena et al., 2007), 
(Detrembleur et al., 2003). Les sujets sains, quant à eux, minimiseraient leurs mouvements latéraux afin 
d’optimiser le déplacement majoritairement antérieur lors de ces phases Aller et Retour (Staszkiewicz 
et al., 2010). 

Concernant le MFC lors des phases de marche orientée, celui-ci était augmenté chez les patients 
hémiparétiques par rapport aux sujets sains. Il eut été légitime de penser que le MFC serait diminué du 
côté parétique chez les patients ayant subi un AVC, compte tenu des déficits de flexion de hanche, de 
genou et de cheville (observés lors de l’étude 1). Cependant, nos résultats indiquent une augmentation 
du MFC du côté parétique, ce qui est en accord avec une récente étude (Little et al., 2014). En effet, 
à l’instar de nos résultats, les déficits (ou l’absence de différence avec les sujets sains) de flexion au 
membre inférieur n’expliquaient pas l’augmentation du MFC observé par ces auteurs (Little et al., 2014). 
Ceci suggère la mise en jeu d’autres paramètres biomécaniques tels que les mouvements du pelvis 
et du membre parétique dans les plans frontal et transversal, non investigués dans nos études, et qui 
pourraient expliquer l’augmentation du MFC. En effet, plusieurs auteurs soulignent la présence d’une 
élévation du pelvis et d’une abduction du membre inférieur du côté parétique lors de la phase oscillante 
(Kerrigan et al., 2000), (Kim and Eng, 2004), (Chen et al., 2005). Cette augmentation de l’obliquité vers 
le haut du bassin associée ou non à une augmentation de l’abduction de hanche pourrait permettre 
d’augmenter la distance entre la pointe du pied et le sol et de fait se traduire par une augmentation 
du MFC. Cette augmentation du MFC du côté parétique retrouvée chez les patients, associée à une 
altération de la cinématique du côté parétique dans le plan sagittal, suggère l’existence d’une stratégie 
(dans le plan frontal et/ou transversal) ayant pour objectif d’assurer une marge de sécurité et d’éviter 
un accrochage du pied parétique avec le sol. Par ailleurs l’absence de corrélation entre le MFC du 
côté parétique et les déficits sensitivomoteurs (résultats de l’étude 3) supporte cette hypothèse d’une 
stratégie d’adaptation plutôt qu’une conséquence des déficits sensitivomoteurs inhérents à l’AVC. 
Nous pouvons supposer que cette augmentation du MFC aurait pour but de limiter le risque de chute, 
sachant que les patients hémiparétiques sont considérés à haut risque de chute, car de petits écarts 
d’amplitude de flexion dorsale de cheville et/ou de flexion de genou du côté parétique permettent 
de différencier les patients hémiparétiques qui trébuchent de ceux qui ne trébuchent pas (Burpee 
and Lewek, 2015).  Ceci étant, bien que nos résultats ne mettaient pas en évidence de différence 
significative pour le MFC entre les patients chuteurs et les non-chuteurs, cette hypothèse demeure 
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valide, car notre échantillon de patients chuteurs était très faible par rapport aux patients non-chuteurs 
ce qui limite la possibilité de mettre en évidence une différence statistiquement significative. Des études 
complémentaires portant sur un plus grand nombre de patients chuteurs semblent donc indispensables 
pour confirmer ou infirmer cette  hypothèse.

I . 3 .1 .2  Pendant la phase du demi-tour

Les patients hémiparétiques présentaient des déplacements verticaux du COM plus importants 
que les sujets sains lors de la phase du demi-tour. Cette augmentation est considérée comme une 
difficulté à maintenir l’équilibre (Perry, 1992), (Tucker et al., 1998), (Detrembleur et al., 2003). En effet, il a 
été montré que les sujets sains minimisent ces déplacements pour une marche optimale et une dépense 
énergétique minimale (Saunders et al., 1953), (Perry, 1992). Une augmentation des déplacements 
verticaux du COM a également été observée chez des patients vestibulaires, instables, lorsqu’on leur 
impose une vitesse de marche (Tucker et al., 1998). De plus, nos résultats montraient qu’une vitesse 
verticale du COM importante lors du demi-tour permet de discriminer les patients chuteurs des non-
chuteurs. Nous pouvons émettre l’hypothèse qu’un défaut de stabilité lors de tâches complexes de 
navigation telles qu’un demi-tour peut être à l’origine de chute chez des patients hémiparétiques. En ce 
sens, Hyndman et al (2002) ont interrogés des patients hémiparétiques sur les circonstances de leurs 
chutes (Hyndman et al., 2002). Les patients rapportent fréquemment une perte d’équilibre lorsqu’ils 
réalisent un demi-tour comme principale cause de leur chute (Hyndman et al., 2002).

A l’inverse des déplacements verticaux, les déplacements médio-latéraux du COM étaient réduits 
chez les patients hémiparétiques, comparativement aux sujets sains, lors de la phase du demi-tour. 
Lors d’une marche orientée vers l’avant, les mouvements du COM dans le plan médio-latéral sont 
considérés comme le reflet d’une difficulté à maintenir la stabilité du sujet (Chou et al., 2004), (Catena et 
al., 2007), (Detrembleur et al., 2003). Or le demi-tour est un mouvement de marche particulier induisant 
une rotation pour orienter le corps vers une nouvelle direction (Hollands et al., 2001). Dans ce contexte, 
les déplacements du COM dans le plan médio-latéral peuvent être envisagés comme la composante 
principale du mouvement, plutôt que le reflet de mouvements « parasites » traduisant une difficulté à 
maintenir la stabilité. De plus, nos résultats montraient une diminution de la vitesse de marche lors de 
la phase du demi-tour, comparativement aux phases de marche orientées, pour les deux populations. 
Ceci est en accord avec le ralentissement du déplacement des sujets sains lors d’une réorientation du 
corps vers une nouvelle direction de l’espace (Patla et al., 1999). Ceci est également cohérent avec 
l’augmentation de la durée et du nombre de pas chez des patients hémiparétiques réalisant le demi-
tour du TUG, comparativement à des sujets sains (Lam and Luttmann, 2009). 

Concernant le MFC lors de cette phase du demi-tour, sa valeur du côté parétique n’était  pas 
différente de celle des sujets sains et était supérieure à la valeur du MFC du côté non-parétique. De plus, 
le MFC était encore plus augmenté lors de cette phase du demi-tour par rapport à la phase de marche 
Aller, pour les patients hémiparétiques et les sujets sains. Cette augmentation est donc un mécanisme 
commun aux deux populations. Des modifications du MFC ont ainsi été précédemment retrouvées 
chez des sujets sains dans un contexte de situations complexes ou induisant de l’instabilité (Heasley 
et al., 2004), (Gates et al., 2012), (Begg et al., 2007). Ce phénomène fait donc figure d’adaptation à la 
complexité de la tâche.
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Rappelons que le seul paramètre clinique corrélé aux paramètres biomécaniques du COM et du 
MFC était le score à la BBS avec une amplitude de rotation au cours du demi-tour (COM dans le plan 
médio-latéral) d’autant plus élevée que le score des patients à la BBS était élevé. Aucun symptôme 
sensori-moteur (déficits moteurs, spasticité, déficits sensitifs) n’apparaissait spécifiquement incriminé 
dans l’influence des critères organisationnels du COM et du MFC.

Pour conclure, les patients hémiparétiques présentent des critères organisationnels 
relatifs à la stabilité différents de ceux des sujets sains lors des phases de marche orientée 
et de demi-tour. Ceci concourt à l’explication de la différence de performance entre les 
deux populations. 

Plus précisément, les patients hémiparétiques présentaient des déplacements du 
COM plus importants que les sujets sains dans le plan médio-latéral lors des phases de 
marche orientée et dans le plan vertical lors de la phase du demi-tour. Ceci traduit, pour 
les patients hémiparétiques, une difficulté à maintenir leur stabilité, sans que celle-ci 
ne soit particulièrement expliquée par certains symptômes cliniques. D’autre part, une 
augmentation du MFC du côté parétique était observée chez les patients hémiparétiques 
(par rapport aux sujets sains lors des phases de marche orientée et, au demi-tour par 
rapport à la phase Aller pour les patients), de même qu’une diminution de l’amplitude 
et de la vitesse de rotation (COM dans le plan médio-latéral) lors du demi-tour. Ces 2 
mécanismes pourraient correspondre à la mise en place de stratégie(s) visant à maintenir 
la stabilité des patients hémiparétiques (ce point sera discuté en deuxième partie de la 
discussion). L’association entre la vitesse de rotation lors du demi-tour et les scores des 
patients à la BBS est en faveur de cette hypothèse. 

I . 3 .2  Trajectoire

Parallèlement aux critères organisationnels relatifs à la stabilité, la trajectoire locomotrice est l’autre 
critère qui traduit l’organisation globale des patients hémiparétiques lors des tâches de navigation du 
TUG. Ces patients présentaient une déviation de leur trajectoire locomotrice par rapport à la trajectoire 
de référence, pour la phase Aller, préparant le contournement de l’obstacle, et la phase du Demi-tour. 
Rappelons que les paramètres cliniques corrélés à ces déviations de la trajectoire étaient la BBS et les 
troubles sensitifs superficiels lors du demi-tour, avec d’autant plus de déviation de la trajectoire que ces 
troubles étaient importants. 

Les modifications de déviation de la trajectoire locomotrice ont précédemment été retrouvées 
chez des sujets sains dans un contexte de situations complexes ou induisant de l’instabilité (Hicheur 
et al., 2007), (Hackney and Cinelli, 2013). A l’inverse, nos résultats contrastaient avec la très récente 
étude de Hicheur et al (2016) (Hicheur et al., 2016). En effet, ces auteurs ont trouvé des trajectoires 
locomotrices spatialement similaires entre des sujets cérébro-lésés (présentant ou non une hémiparésie) 
et des sujets sains lorsqu’ils devaient atteindre une cible à partir de trois positions de départ différentes 
(induisant des trajectoires plus ou moins curvilignes). La nature de la tâche (demi-tour complet vs 
trajectoires incurvées) et les caractéristiques des sujets contribuent très probablement à expliquer cette 
différence entre nos résultats et ceux de ces auteurs.
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D’autres études relatant l’analyse de tâches de navigation chez des sujets âgés, présentant 
également des troubles sensori-moteurs et d’équilibre, ont été publiées (Takei et al., 1996), (Gérin-Lajoie 
et al., 2006). Takei et al (1996) ont mis en évidence des trajectoires polygonales chez des sujets âgés 
devant reproduire la trajectoire d’un cercle tracé au sol avec des lunettes opaques après s’être entrainé 
sans lunettes (Takei et al., 1996). A l’inverse, cette trajectoire est quasi superposable au cercle idéal 
pour les sujets jeunes. De plus, en condition de double tâche, un élargissement du rayon de courbure 
est observé pour les sujets âgés. Cette étude suggère que les déficits perceptifs et locomoteurs 
des sujets âgés altèrent la reproduction, sans le contrôle visuel, d’une trajectoire locomotrice. Plus 
récemment, Gérin-Lajoie et al (2006) ont montré que l’évitement d’un mannequin lors d’une marche 
orientée vers une table induit une diminution de la vitesse d’avancement chez des sujets jeunes et âgés 
et, une distance d’évitement plus importante pour les sujets âgés (Gérin-Lajoie et al., 2006). Cette 
distance d’évitement, augmentée en condition de double tâche, est considérée comme l’assurance 
d’une marge de sécurité. Au final, les résultats de ces deux études sont en accord avec nos résultats, à 
savoir la mise en évidence de modifications de la trajectoire locomotrice dans un contexte de navigation 
avec contraintes environnementales (obstacle à contourner ou éviter, trajectoire complexe à reproduire) 
chez des sujets présentant des troubles sensori-moteurs et de stabilité. 

Pour conclure, les patients hémiparétiques présentent des critères organisationnels 
relatifs à la trajectoire locomotrice différents de ceux des sujets sains lors des phases Aller 
et Demi-tour. Ceci concourt à l’explication de la différence de performance entre les deux 
populations. 

La différence observée pour les phases Aller et Demi-tour suggère une organisation 
spécifique des patients hémiparétiques selon la nature de la tâche de navigation et donc 
le contexte environnemental. Les phases concernées par la déviation (phase complexe du 
demi-tour et la phase précédente), les liens avec la BBS et les suggestions de la littérature 
nous laissent supposer l’existence d’un lien entre cette déviation de la trajectoire et la 
stabilité des patients hémiparétiques (ce point sera discuté en deuxième partie de la 
discussion). 

II  La stratégie
La première partie de discussion nous a permis de présenter la performance des patients 

hémiparétiques lors de tâches de navigation, les paramètres explicatifs de cette performance et les 
critères organisationnels des patients hémiparétiques par rapport aux sujets sains. L’objectif de cette 
seconde partie de discussion est de faire les liens entre ces critères de performance, explicatifs et 
organisationnels des patients hémiparétiques afin d’envisager la stratégie que ces patients mettent en 
place lors de l’exécution de tâches de navigation rencontrées au quotidien. 

Rappelons tout d’abord que les patients hémiparétiques ont une performance chronométrique 
diminuée par rapport aux sujets sains et que plusieurs facteurs contribuent à ce résultat : une cinématique 
différente (contrôle différent des mêmes paramètres pour les phases de marche, contrôle de paramètres 
spécifiques différents pour le demi-tour), une stabilité différente, une trajectoire locomotrice différente et 
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des perturbations cliniques. Il apparait donc que les patients hémiparétiques s’organisent différemment 
lors de tâches de navigation comparativement aux sujets sains.

L’organisation des patients hémiparétiques repose sur un facteur prépondérant qui est le maintien 
d’une stabilité « optimale » pour assurer la meilleure performance chronométrique possible en fonction 
de la tâche demandée. Un défaut de stabilité était observé chez les patients hémiparétiques au cours 
de chacune des phases de navigation. Ainsi, les déplacements médio-latéraux des patients étaient 
augmentés lors des phases de marche orientée et leurs déplacements verticaux étaient augmentés 
de la phase de demi-tour. Notons que l’observation des trajectoires locomotrices mettait en évidence 
des trajectoires d’allure « ondulée » pour les patients hémiparétiques et d’allure plus « lisses » pour les 
sujets sains. Nous pouvons envisager qu’une caractérisation de ces « ondulations » pourrait également 
traduire un défaut de stabilité chez les patients hémiparétiques.

La stabilité des patients (ou leur défaut de stabilité) apparait comme un élément décisif pour 
l’exécution de ces tâches de navigation du fait de son influence sur la performance. En effet, nos résultats 
montrent un lien entre la performance des patients (ou les facteurs explicatifs de cette performance) 
et la stabilité de ces patients, quelle que soit la phase considérée. La phase du demi-tour dépend 
principalement du pourcentage de phase de simple appui du côté parétique et du pourcentage de phase 
oscillante du côté non-parétique, des paramètres de stabilité. De plus, il existe une corrélation positive 
entre ce dernier paramètre lors de cette phase du demi-tour et les capacités d’équilibration des patients 
(score à la BBS). Concernant les phases de marche orientée, la longueur de pas (paramètre explicatif 
de la performance lors de ces phases) est positivement corrélée avec les capacités d’équilibration des 
patients (score à la BBS). Ce lien entre la stabilité et la performance de patients hémiparétiques lors de 
tâches de navigation corrobore les résultats d’études relatant l’impact des troubles de l’équilibre de ces 
patients (également évalués avec la BBS) sur leur vitesse de marche en ligne droite sans but à atteindre 
(Richards et al., 1995), (Kobayashi et al., 2016).

	 Pour conclure, la stabilité des patients hémiparétiques est un critère important 
qui conditionne la performance lors de l’exécution de tâches de navigation. Il apparait alors 
intéressant de s’interroger sur l’existence d’une stratégie de compromis entre stabilité et 
performance chez les patients hémiparétiques lors de tâches de navigation.

La réalisation d’un demi-tour par contournement d’un obstacle est une tâche complexe en termes 
de stabilité pour les patients hémiparétiques. Nos résultats montrent d’ailleurs que la performance de 
ces patients lors du demi-tour implique spécifiquement des paramètres de stabilité. Dans ce contexte, 
l’amplitude et la vitesse du COM dans le plan médio-latéral des patients hémiparétiques étaient réduites 
au cours de cette phase comparativement aux sujets sains. De même, la vitesse de marche était 
diminuée de lors de cette phase du demi-tour, comparativement aux phases de marche orientées. 
Une durée plus importante du demi-tour lors du TUG a également été mise en évidence chez des 
sujets âgés relatant des difficultés au demi-tour, comparativement à des sujets âgés ne relatant aucune 
difficulté pour les demi-tours et des sujets jeunes (Thigpen et al., 2000). Les auteurs suggèrent alors que 
cette durée plus importante associée à la présence d’oscillations et d’une stratégie « pas multiples » 
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(par rapport à une absence d’oscillations et des « pas pivot » pour les sujets jeunes) sont des indicateurs 
de défaut de stabilité. Ces adaptations font alors figure de stratégie de simplification ayant pour but la 
réalisation d’un mouvement sans perte de stabilité. 

Au vu de nos résultats et de la littérature, nous émettons l’hypothèse que les patients 
hémiparétiques ont des mouvements dans le plan médio-latéral réduits par rapport aux sujets sains, 
lors du demi-tour du TUG (composante principale du mouvement à cette phase) pour favoriser leur 
stabilité, aux dépens de la performance. L’association d’une faible amplitude et d’une faible vitesse 
du COM dans le plan médio-latéral avec un faible score à la BBS est un argument confortant cette 
hypothèse, de même que l’existence d’une corrélation négative entre les déplacements du COM dans 
le plan médio-latéral et la performance lors de cette phase du demi-tour. L’étude récente de Hurt et 
Grabiner (2015) permet d’étayer cette hypothèse (Hurt and Grabiner, 2015). Ces auteurs ont étudié 
la réalisation d’un « pas latéral tout en continuant à marcher en ligne droite » chez des sujets jeunes 
et âgés. Leurs résultats mettent en évidence une vitesse réduite et une stabilité augmentée chez les 
sujets âgés, comparativement aux sujets sains. Les auteurs suggèrent la mise en place d’une stratégie 
d’adaptation par les sujets âgés, visant à assurer la stabilité lors de la réalisation de la tâche. A l’inverse, 
les sujets jeunes favoriseraient la manœuvrabilité avec une vitesse de marche non diminuée lors de la 
réalisation du pas latéral, aux dépens de la stabilité. De manière similaire, les patients hémiparétiques 
inclus dans nos études prioriseraient une stratégie optimisant la stabilité au dépens de la performance 
lors du demi-tour.

Au même titre que des déplacements du COM lors du demi-tour diminués chez les patients 
hémiparétiques par rapport aux sujets sains, le MFC augmenté du côté parétique chez les patients lors 
des tâches de marche orientée peut être considéré comme une stratégie pour faire face à une situation 
complexe d’un point de vue de la stabilité. Ainsi, l’augmentation du MFC apparait être une stratégie 
fréquemment utilisée lorsqu’un sujet est confronté à la gestion d’une tâche locomotrice complexe. 

Au final, les éléments précédents relatifs au COM et au MFC amènent à considérer 
ces critères organisationnels des patients hémiparétiques comme la mise en place d’une 
stratégie visant à conserver leur stabilité lors des tâches de navigation. Nous envisageons 
en effet la diminution des déplacements du COM dans le plan médio-latéral lors du demi-
tour et l’augmentation du MFC comme des ajustements observables dans un contexte 
engendrant des difficultés à maintenir une stabilité. La performance des patients lors de 
ces tâches de navigation est donc conséquente de cette stratégie de stabilisation. 

De la même manière, un faisceau d’éléments permet de supposer que la déviation de trajectoire 
observée dans nos résultats peut être interprétée comme une stratégie d’adaptation du fait des 
défauts de stabilité des patients. En effet, les paramètres de déviation de la trajectoire (DTW et HD) 
étaient corrélés avec le score des patients à la BBS avec davantage de déviation lorsque les déficits 
d’équilibration étaient importants. Nous postulons alors que pour faire face aux difficultés de maintien 
de la stabilité lors de tâches complexes de navigation impliquant des changements de direction, les 
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patients hémiparétiques mettent en place une stratégie d’ajustement en déviant leur trajectoire afin 
d’organiser progressivement le changement de direction. En ce sens, l’adaptation des paramètres 
spatio-temporels de marche et de la distance par rapport à un obstacle à contourner a été soulignée 
comme moyen mis en œuvre pour éviter tout déséquilibre (Higuchi, 2013). 

Lorsque l’on considère les phases du TUG indépendamment, cette association entre les 
paramètres de déviation de la trajectoire et le score à la BBS était vérifiée uniquement pour la phase 
du demi-tour. Nous pouvons donc supposer que, pour compenser leurs troubles de l’équilibre, les 
patients dévient leur trajectoire pour assurer davantage de sécurité pendant cette phase de demi-tour, 
particulièrement complexe et sollicitant davantage la stabilité. Précisons que la déviation de trajectoire 
lors de cette phase du demi-tour était corrélée aux déficits sensitifs pouvant eux-mêmes contribuer aux 
troubles de l’équilibre (Niam et al., 1999), (Kligyte et al., 2003), (Tyson et al., 2013), (Yates et al., 2002). 
Pour la phase Aller, aucune corrélation n’était retrouvée entre la déviation de la trajectoire et le score à la 
BBS des patients. Pourtant nos résultats montraient que la déviation de la trajectoire au cours de cette 
phase était différente entre les patients chuteurs et les non-chuteurs. Les phases Aller et Retour peuvent 
être perçues comme similaires si l’on considère la tâche uniquement : marche orientée vers une cible et 
précédent un demi-tour. En revanche, lorsque le contexte est pris en compte, soit la totalité de la tâche 
de navigation à effectuer, la phase Aller est la phase qui précède le complexe contournement du cône 
alors que la phase Retour signe la fin du test et précède l’assise du patient. La déviation de trajectoire 
observée lors de la phase Aller et qui n’est pas en lien avec les déficits d’équilibre des patients semble 
donc indissociable de la phase du demi-tour qui la succède. Ainsi, nous pouvons envisager la déviation 
de la trajectoire de la phase Aller comme étant une préparation de la déviation de la phase du demi-tour.

Au final, la déviation de la trajectoire locomotrice observée chez les patients 
hémiparétiques semble faire figure de stratégie pour conserver leur stabilité lors des 
tâches de navigation. La phase du demi-tour par contournement et la phase précédente 
sont celles concernées par cette déviation. Ceci laisse supposer que les patients 
hémiparétiques mettent en place une stratégie de changement de direction progressif, 
dès la phase précédant celle particulièrement instable, pour permettre une optimisation du 
maintien de la stabilité lors du contournement du cône. 

Des études analysant les adaptations d’une tâche locomotrice avec pointage de cibles et 
perturbations de la stabilité corroborent notre hypothèse d’une stratégie basée sur un compromis entre 
stabilité et trajectoire (Hak et al., 2013a), (Hak et al., 2013b). Hak et al (2013) ont récemment mis en 
évidence une diminution de la longueur de pas plus importante lors de l’adjonction d’une perturbation 
de la stabilité (translation de la surface de marche) à une tâche de pointage (avec les genoux) en 
comparaison à la tâche de pointage seule chez des sujets sains (Hak et al., 2013a). Les mêmes auteurs 
ont ensuite comparé les adaptations de marche lors d’une perturbation de la stabilité et lors d’une 
tâche de pointage chez 10 sujets hémiparétiques et 9 sujets sains (Hak et al., 2013b). Lors de la 
comparaison inter-groupe, la perturbation de la stabilité induisait une diminution de la longueur de pas 
pour les deux groupes (plus importante pour les patients) et une diminution de la vitesse de marche 
uniquement pour les patients hémiparétiques. La tâche de pointage engendrait une diminution de la 
vitesse de marche et davantage d’instabilité uniquement pour les patients hémiparétiques. Ces deux 
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études montrent l’existence de processus d’adaptation chez des sujets sains et chez des patients 
hémiparétiques soumis à des tâches déséquilibrantes lors de tâches locomotrices. A l’instar de ces 
études, l’élargissement de la trajectoire locomotrice lors d’une tâche potentiellement déstabilisante de 
contournement d’un obstacle peut être considéré comme une stratégie d’adaptation permettant aux 
patients hémiparétiques de maintenir leur stabilité.

Ce compromis entre contrôle du mouvement et stabilité a été récemment étudié chez 11 sujets 
sains lors d’une tâche combinant ces deux dimensions en position debout  (Huang and Ahmed, 2011). 
La tâche de contrôle consistait pour les sujets à pointer rapidement une cible dans le plan antéro-
postérieur à partir des déplacements de leur centre de pression et la tâche concomitante de stabilité 
consistait à maintenir stable un plateau reposant sur une base étroite médio-latéralement. Les résultats 
montraient que la majorité des sujets aboutissaient à un meilleur contrôle au détriment de la stabilité qui 
était réduite. Les auteurs suggèrent que la diminution de la stabilité n’est pas nécessairement inadaptée 
lorsqu’on souhaite augmenter le contrôle. A l’inverse, nous pouvons supposer que les patients 
hémiparétiques inclus dans cette série d’expérimentations, présentant des troubles de l’équilibre, 
favorisent la stabilité (avec une rotation restreinte lors du demi-tour et une déviation de la trajectoire) au 
détriment de la performance lors du TUG. Une stratégie de compromis entre stabilité et performance 
apparait donc inhérente à la stratégie de compromis entre stabilité et trajectoire mise en place par les 
patients hémiparétiques lors de tâches de navigation. 

Pour conclure, il existe une convergence d’arguments mettant en exergue la présence 
d’une stratégie, chez les patients hémiparétiques, prenant en compte les difficultés 
de maintien de leur stabilité pour réaliser des tâches de navigation. Ainsi, les patients 
hémiparétiques présentent une organisation particulière au niveau de leur comportement 
locomoteur global avec la déviation de la trajectoire locomotrice et la diminution des 
mouvements de rotation, mais également à un niveau plus local avec l’augmentation du 
MFC. 

Trois types de stratégie ont été décrits par Patla (2003) pour maintenir la stabilité au cours de 
la locomotion  : la stratégie rétroactive (liée à la détection sensorielle d’une perturbation inattendue), 
la stratégie anticipatrice (identification d’une potentielle perturbation basée essentiellement sur les 
afférences visuelles et guidée par les expériences passées) et la stratégie prédictive (estimation d’une 
perturbation attendue générée par les mouvements, basée sur des expériences passées), les deux 
dernières étant des stratégies proactives (Patla, 2003). 

Concernant la stratégie rétroactive, Lamontagne et al (2010) ont trouvé une absence d’adaptation 
ou des erreurs de trajectoires locomotrices chez des sujets hémiparétiques soumis à des flux optiques 
par rapport à une trajectoire stéréotypée adoptée par des sujets sains (Lamontagne et al., 2010). 
Les auteurs incriminent l’altération de la perception et du contrôle visuo-moteur après un AVC. Dans 
notre étude, la déviation de trajectoire retrouvée chez les patients hémiparétiques comparativement aux 
sujets sains pourrait, de la même manière, s’expliquer par l’altération de l’intégration sensori-motrice 
des patients et donc une difficulté de mise en place de la stratégie rétroactive. Aussi, la perception 
et l’intégration des afférences sensorielles sont nécessaires pour une adaptation de la marche à 
l’environnement (Berthoz and Viaud-Delmon, 1999). Une trajectoire locomotrice optimale et stabilisée 
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est effectivement le résultat d’une combinaison des afférences visuelles, proprioceptives et vestibulaires 
(Hicheur et al., 2007), (Cirio et al., 2013). Les patients inclus dans nos études présentaient des déficits 
sensitifs (qui étaient corrélés à la déviation de la trajectoire) et des troubles visuels (hémianopsie latérale 
homonyme), pour deux d’entre eux. Les fonctions vestibulaires sont quant à elles rarement affectées à 
la suite d’un AVC. De plus, à la suite d’un AVC, les patients présentent une difficulté à mettre en place 
des ajustements rétroactifs (Fisher et al., 2000). Au final, les déviations de trajectoire présentées par 
les patients hémiparétiques aux phases Aller et Demi-tour pourraient s’expliquer par une difficulté de 
perception, d’intégration et de mise en place d’une stratégie de type rétroactive lors de ces tâches de 
navigation. 

Certains arguments sont, en revanche, en faveur d’une stratégie proactive, mise en place par 
les patients pour faire face à une situation complexe d’un point de vue de la stabilité. La déviation 
sur la totalité des phases Aller et Demi-tour et non en un point extrême isolé (différence significative 
pour DTW qui correspond à la totalité de la phase) et la « marge spatiale » retrouvée dans la littérature 
pour éviter les perturbations dans des situations complexes de stabilité (Higuchi, 2013), (Hackney and 
Cinelli, 2013) sont en faveur d’une stratégie proactive d’une situation à risque de chute. La déviation 
de la trajectoire présente dès la phase Aller et permettant la discrimination des patients chuteurs nous 
laissent supposer l’existence d’une stratégie anticipatrice ou prédictive, précédent la phase complexe 
du demi-tour. Ce comportement serait à l’image de celui des sujets sains et des sujets âgés qui mettent 
en place une déviation de trajectoire anticipatrice, avant un obstacle à éviter, assurant une marge 
spatiale de sécurité (Gérin-Lajoie et al., 2005), (Gérin-Lajoie et al., 2006), (Hicheur et al., 2007). Par 
ailleurs, notons que les expériences déséquilibrantes vécues dans le passé permettent la mise en place 
d’ajustements proactifs afin d’assurer la stabilité (Marigold and Patla, 2002). Au vu de ces éléments, nous 
pouvons supposer que les patients hémiparétiques chroniques inclus dans notre étude, présentant des 
troubles de l’équilibre et étant confrontés quotidiennement à des tâches de navigation potentiellement 
déséquilibrantes, dévient leur trajectoire afin d’être précautionneux pour la réalisation de la préparation 
et l’exécution du contournement de l’obstacle. Ceci étant, aucune évidence à l’issue de nos études ne 
permet de confirmer ces hypothèses. 

	 Pour conclure, les stratégies rétroactive et proactive sont décrites pour le 
maintien de la stabilité au cours de la locomotion. Nos résultats laissent supposer une 
difficulté de mise en place d’ajustements rétroactifs chez les patients hémiparétiques 
lors de la réalisation de tâches complexes de navigation comme le contournement d’un 
obstacle. En revanche, ces patients semblent mettre en œuvre une stratégie proactive en 
connaissance de la perturbation à venir. Ainsi nous pouvons considérer la stratégie de 
compromis entre la stabilité, la trajectoire et la performance comme le reflet d’ajustements 
proactifs. 
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III  Intérêts cliniques
Ce travail repose sur une évaluation instrumentale du TUG chez des patients hémiparétiques pour 

permettre une compréhension de leur comportement locomoteur dans des tâches de navigation. Les 
analyses menées et leurs résultats émergents d’un point de vue cinématique, de la stabilité et de la 
trajectoire vont pouvoir être utiles aux cliniciens sur le plan de l’évaluation des patients hémiparétiques. 

III . 1  Les tâches

	 La différence de résultats obtenus en fonction de la nature de la tâche de navigation confirme 
l’intérêt d’évaluer les tâches composant le TUG sur le plan biomécanique. Un comportement spécifique 
(d’un point de vue cinématique, stabilisation et trajectoire) était en effet observé, selon les tâches 
incriminées. L’évaluation de tâches de navigation, correspondant davantage aux activités locomotrices 
du quotidien par rapport à une marche stabilisée en ligne droite sans objectif, semble donc être une 
approche à favoriser. 

De plus, dans la prise en charge des patients hémiparétiques, il est recommandé de privilégier 
des exercices en «  tâche orientée  », autrement dit des exercices à réaliser en environnement réel 
et correspondant aux actions de la vie quotidienne (Carr and Shepherd, 1998). Le travail en « tâche 
spécifique  », sous-entendant que les tâches améliorées sont celles spécifiquement travaillées, est 
également recommandé en rééducation neurologique (Kwakkel et al., 1999). Il apparait donc pertinent 
d’envisager des évaluations en adéquation avec les tâches travaillées en rééducation. 

Les tâches de navigation impliquées dans le TUG sont fréquemment travaillées en rééducation 
et réalisées par les patients au quotidien. Néanmoins l’évaluation couramment menée dans ce cadre 
reste la performance chronométrique au TUG, qui peut ne pas être suffisamment sensible pour mettre 
en évidence de modifications à l’issue de l’entrainement. Certains auteurs ne trouvent ainsi pas 
d’amélioration au test du TUG à l’issue de plusieurs semaines d’entrainements en tâche orientée (Dean 
et al., 2000), (Salbach et al., 2004) alors que d’autres trouvent des effets modérés (Blennerhassett and 
Dite, 2004), (Mead et al., 2007). Il est possible que les entrainements n’entrainent pas de modification 
du TUG ou bien que la performance chronométrique à ce test ne permette pas de mettre en évidence 
une différence. De même, une précédente étude de notre équipe n’a pas trouvé de différence à la 
performance au TUG à l’issue d’un entraînement de marche au sol par rapport à un entrainement sur 
tapis roulant (Bonnyaud et al., 2014). Cependant, nous pouvons émettre l’hypothèse que l’amélioration 
de la performance globale pouvait masquer l’amélioration spécifique de telle phase du TUG selon 
l’entrainement réalisé (amélioration des phases de marche orientée pour l’entrainement sur tapis roulant 
et du demi-tour pour l’entrainement dans le couloir impliquant des demi-tours). Une réponse à la limite 
de l’interprétation de l’absence de modification d’un score global de performance peut être l’analyse 
des composantes aboutissant à ce score, ce qui légitime l’analyse instrumentée du TUG par exemple. 
D’autres auteurs ont présenté la même démarche que celle de notre travail, orientée vers l’analyse 
et la compréhension d’autres tâches locomotrices rencontrées au quotidien comme l’enjambement 
d’obstacles lors d’une marche lancée (Said et al., 1999), (Said et al., 2001), (Said et al., 2008), (Said et 
al., 2014). Ce genre d’analyse approfondie pourrait être proposé pour évaluer les effets d’entrainements 
orientés vers ces tâches quotidiennes de navigation. Hollands et al (2015) ont par exemple récemment 
proposé un entrainement d’évitement d’obstacles destiné à des patients hémiparétiques (Hollands et 
al., 2015). 
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III . 2   Les modalités et paramètres

Concernant les modalités d’évaluation du TUG instrumenté, les résultats de l’étude 1 permettent 
de recommander une condition standardisée (par rapport à une condition spontanée sans consigne 
spécifique quant au sens du demi-tour ou au positionnement initial) pour de prochaines évaluations 
instrumentées du TUG.	

Concernant les paramètres, nos études ont évalué la cinématique, analysée habituellement en 
routine clinique lors d’une marche stable en ligne droite, mais également des paramètres de stabilité et 
de trajectoires locomotrices, rarement investigués en routine. Or, les résultats de notre travail mettent 
en évidence l’intérêt d’évaluer ces derniers. Ainsi, les déplacements du COM reflètent tantôt un défaut 
de stabilité, tantôt une marche précautionneuse (lors d’un demi-tour par exemple), de même que le 
MFC qui traduit également une marche précautionneuse par son augmentation. La trajectoire adoptée 
pour ces tâches de marche orientée et de contournement d’un obstacle peut être analysée en termes 
de déviation par rapport à une trajectoire optimale, nous informant alors sur l’organisation spatiale 
adoptée par les patients. Ces paramètres de stabilité et de trajectoire, en complément des paramètres 
cinématiques, permettent une compréhension du comportement locomoteur des patients à l’origine de 
leur performance. La mise en évidence de liens entre ces paramètres biomécaniques et les données 
cliniques permet d’envisager les difficultés des patients hémiparétiques lors de l’exécution de tâches 
de navigation. Ainsi les patients présentant des troubles de l’équilibre, objectivables par un faible 
score à la BBS, seront certainement confronter à une difficulté lors de la réalisation de demi-tours par 
contournement. Une moindre amplitude de rotation et une déviation de la trajectoire locomotrice seront 
alors probablement adoptées pour éviter un risque de chute. D’autre part, nous pouvons émettre 
l’hypothèse qu’un programme de rééducation orienté vers un travail de la stabilité dynamique lors de 
tâches de navigation avec demi-tours permettrait une meilleure performance lors de ces tâches avec 
une rotation plus ample et une moindre déviation. 

Au-delà de l’analyse de l’organisation comportementale des patients hémiparétiques, les 
paramètres étudiés dans ce travail ont permis de discriminer les patients chuteurs des non-chuteurs, 
alors que la littérature pointe les limites d’une telle distinction avec l’approche clinique conventionnelle 
du TUG (Andersson et al., 2006), (Persson et al., 2011), (Barry et al., 2014). Le fort taux de chutes chez 
les patients hémiparétiques et les conséquences possiblement  invalidantes font du dépistage du risque 
de chute une question importante chez ces patients. Nos résultats laissent envisager que ce ne serait 
pas le score chronométrique global au TUG (pas de différence significative entre les chuteurs et les non-
chuteurs) mais certains paramètres lors d’une certaine phase du TUG qui seraient plus spécifiquement 
prédictifs des chutes des patients hémiparétiques. La phase du demi-tour et la phase de marche 
orientée précédant celle du demi-tour apparaissent en effet comme les deux phases complexes du TUG 
permettant de discriminer les patients chuteurs, au moyen de paramètres de stabilité et de trajectoire, 
usuellement peu analysés. Ces informations vont permettre d’orienter l’évaluation sur les paramètres 
et les tâches locomotrices pertinentes pour mettre en exergue un risque de chute chez des patients 
hémiparétiques. L’identification des patients à risque de chute en amont de la survenue d’une chute et 
de ses conséquences (possible détérioration des capacités fonctionnelles, fractures, coûts médicaux) 
pourrait permettre une orientation spécifique de la prise en charge rééducative vers un travail de la 
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stabilité lors de tâches de navigation complexes par exemple. Cependant, des précautions doivent être 
prises quant à l’interprétation de nos résultats concernant les chuteurs du fait de la disproportion de 
nos groupes chuteurs et non-chuteurs. Une étude dont l’objectif serait spécifiquement de discriminer 
les patients chuteurs des non-chuteurs permettrait d’étayer ces éléments.

Au final, une évaluation instrumentée du TUG pourrait s’avérer intéressante pour l’analyse des 
effets de telle ou telle thérapeutique (qu’elle soit rééducative, médicale ou chirurgicale) sur des paramètres 
telle que la trajectoire ou ceux reflétant la stabilité au cours de tâches de navigation rencontrées au 
quotidien.



148

CHAPITRE 5:  CONCLUSIONS ET PERSPECTIVES

I  Conclusions
L’objectif de ce travail était de caractériser l’organisation des patients hémiparétiques par une 

analyse biomécanique de tâches de navigation rencontrées au quotidien comme celles impliquées dans 
le TUG (marche orientée vers une cible à contourner et demi-tour par contournement de cette cible). 
Cette analyse passait par une approche conventionnelle, l’analyse des paramètres spatio-temporels 
et de la cinématique articulaire, et par deux approches plus innovantes, l’analyse de paramètres de 
stabilité et de trajectoire locomotrice.

Le chapitre 1 de ce travail a permis de faire le point sur les symptômes pouvant impacter la 
marche à la suite d’un AVC et de poser les bases théoriques de la cinématique de la marche humaine 
et des troubles de la marche chez les patients hémiparétiques. Ce chapitre propose également une 
approche de la stabilité pendant la marche et ses observations chez les patients hémiparétiques, 
soumis à une problématique de la chute. Puis une contextualisation de la marche est proposée dans 
l’environnement du sujet, aboutissant à la notion de navigation.  Cette navigation induit une approche 
des trajectoires locomotrices, en lien avec l’adaptation aux contraintes environnementales. Au final, un 
test clinique, représentatif de tâches de navigation quotidiennes des patients et usuellement utilisé est 
proposé pour une analyse biomécanique contrastant avec la mesure conventionnelle de sa performance 
chronométrique.  

Cette revue de littérature nous a guidé dans le choix de paramètres biomécaniques à analyser, 
présentés en chapitre 2. Ce chapitre exposait méthodologie générale et donc les outils utilisés et la 
procédure expérimentale.
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Le chapitre 3 analysait les paramètres spatio-temporels et de la cinématique articulaire liés à 
la performance chronométrique des phases de marche orientée et de demi-tour du TUG chez des 
patients hémiparétiques chroniques et des sujets sains dans les études 1 et 2. Ce chapitre présentait 
également l’analyse des déplacements du COM et du MFC, dans l’étude 3, et l’analyse des trajectoires 
locomotrices, dans l’étude 4, de patients hémiparétiques et de sujets sains, lors des mêmes phases du 
TUG. Des analyses complémentaires ont été menées pour mettre en évidence les corrélations entre les 
données cliniques des patients et les paramètres biomécaniques investigués.

Le chapitre 4 proposait une discussion des résultats des différentes études permettant la 
caractérisation de l’organisation des patients hémiparétiques comparativement à des sujets sains, au 
moyen de critères de performance, de critères explicatifs de la performance et de critères organisationnels. 
Puis une interprétation de la stratégie mise en place par les patients a été proposée avec la notion de 
compromis entre la performance, la stabilité et la trajectoire locomotrice. Les intérêts cliniques orientant 
vers l’évaluation de tâches de navigation des patients hémiparétiques sont finalement présentés. 

Les principaux résultats de cette thèse mettent en évidence une diminution de la majorité des 
paramètres spatio-temporels et de la cinématique articulaire lors des tâches de navigation du TUG chez 
les patients hémiparétiques comparativement aux sujets sains. Les patients hémiparétiques contrôlent 
les tâches de marche orientée à partir des mêmes paramètres que les sujets sains (avec une modulation 
différente) et contrôlent la tâche du demi-tour par des paramètres spécifiques différents, relatifs à la 
stabilité. La stabilité des patients hémiparétiques ressort comme un critère particulièrement important 
qui conditionne la performance des tâches de navigation. 

Un défaut de stabilité des patients hémiparétiques était observable par des déplacements du 
COM plus importants que les sujets sains dans le plan médio-latéral lors des phases de marche orientée 
et dans le plan vertical lors de la phase du demi-tour. La diminution des déplacements du COM dans 
le plan médio-latéral lors du demi-tour et l’augmentation du MFC sont alors envisagés comme la mise 
en place d’une stratégie visant à conserver la stabilité des patients hémiparétiques lors de ces tâches 
de navigation. La déviation de la trajectoire locomotrice observée chez les patients hémiparétiques lors 
des phases Aller et Demi-tour est également envisagée comme une stratégie visant une optimisation 
du maintien de la stabilité permise par un changement de direction progressif, dès la phase précédant 
celle particulièrement instable. La performance des patients lors de ces tâches de navigation est donc 
conséquente de ces stratégies de stabilisation. 

Au final, les patients hémiparétiques semblent mettre en place une stratégie de compromis entre 
la stabilité, la trajectoire et la performance lors de la réalisation de tâches de navigation. Précisons que 
les patients présentant les scores les plus faibles à la BBS ont une moindre longueur de pas lors des 
phases de marche orientée, restreignent leur amplitude de rotation et dévient davantage leur trajectoire 
lors du demi-tour. Aussi, lors du demi-tour, une déviation plus importante de la trajectoire est observée 
chez les patients présentant des troubles de la sensibilité superficielle plantaire et une diminution de 
la phase de simple appui du côté parétique est observée chez les patients présentant davantage de 
déficits moteurs.

	 Les résultats de ce travail montrent par ailleurs l’intérêt d’évaluer l’organisation locomotrice 
des patients hémiparétiques lors de l’exécution de tâches de navigation, en complément des tests 
cliniques chronométriques et d’une analyse de marche en ligne droite. A la suite d’une prise en charge 
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thérapeutique, des améliorations pourraient ainsi être mises en évidence par ces paramètres de stabilité, 
de trajectoire et cinématiques au cours de tâches de navigation alors que celles-ci pourraient ne pas 
être détectées par un score chronométrique ou une analyse de la marche décontextualisée.

II  Perspectives

II . 1  Séquence de rotation axiale 

La navigation implique deux composantes, la stabilisation et l’orientation. La stabilisation 
correspond au contrôle de l’équilibre du sujet lors de différentes tâches locomotrices et l’orientation 
correspond à l’interface entre le sujet et le monde extérieur afin d’orienter le mouvement, elle est centrée 
sur l’environnement. Ce travail a permis une approche de la stabilisation, mais n’a que peu abordé 
l’orientation, au travers de la trajectoire, qui reste un pan intéressant à étudier. L’étude de la séquence 
de rotation axiale, par rapport à l’obstacle à contourner, apparait être une perspective à envisager afin 
de compléter la compréhension de l’orientation du sujet lors de tâches de navigation. Cette analyse 
apporterait un élément de réponse à la problématique soulevée précédemment, à savoir l’éventuelle 
existence d’une stratégie proactive chez les patients hémiparétiques réalisant des tâches de navigation. 

Plusieurs études se sont intéressées aux stratégies d’orientation de la tête et du tronc de lors de 
tâches de navigation impliquant des changements de direction. Des changements d’orientation de la 
tête ont systématiquement été observés préalablement au changement de direction de la trajectoire 
locomotrice, suggérant l’existence d’une stratégie anticipatrice de la future direction d’avancement 
chez les sujets sains, à l’image des mécanismes anticipatoires lors de l’initiation de la marche par 
exemple (Grasso et al., 1996), (Grasso et al., 1998), (Grasso et al., 1998), (Hollands et al., 2001), 
(Courtine and Schieppati, 2003), (Prévost et al., 2003), (Hicheur et al., 2005). Cette rotation initiale de la 
tête, précédant le changement de direction de la trajectoire locomotrice, était suivie par une séquence 
de rotation organisée de haut en bas (tête puis tronc puis membres inférieurs). Avec l’avancée en âge 
de l’enfant, la rotation de la tête est progressivement dissociée de la rotation du tronc, témoignant de la 
mise en place progressive d’une stratégie d’anticipation au fur et à mesure de l’apprentissage (Grasso 
et al., 1998).

Cette stratégie anticipatoire est stable et reproductible, avec la présence d’une anticipation 
en l’absence d’afférences visuelles et une distance constante d’orientation de la tête par rapport à 
l’obstacle à contourner (Courtine and Schieppati, 2003), (Prévost et al., 2003). De plus, l’orientation 
de la tête est liée à la géométrie du parcours de navigation et à l’activité de locomotion, comme étant 
le reflet d’une coordination entre les yeux, la tête et les membres (Hicheur et al., 2005). La présence 
de ce comportement anticipateur reproductible lorsque la vue est occultée souligne qu’il n’est pas 
exclusivement basé sur les afférences visuelles et laisse supposer que cela fait partie de notre librairie 
interne de synergies axiales de rotation (Courtine and Schieppati, 2003).

Cette anticipation de rotation de la tête lors de changements de direction est interprétée comme 
une contribution à la perception par une recherche active de nouvelles afférences permettant une mise 
à jour des changements environnementaux afin de planifier au mieux le mouvement (Courtine and 
Schieppati, 2003). Ainsi, le sujet prendrait régulièrement connaissance de l’environnement avec ses 
contraintes, des obstacles, des cibles à atteindre. 
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	 A notre connaissance une seule étude a récemment analysé la rotation de la tête de sujets 
hémiparétiques lors d’un changement de direction. Hollands et al (2010) ont ainsi analysé, parmi 
d’autres paramètres, la coordination axiale d’un point de vue spatial et temporel lors de la réalisation 
d’un demi-tour chez des patients hémiparétiques et des sujets sains (Hollands et al., 2010). Les résultats 
montraient une rotation de la tête anticipatrice du changement de direction, similaire d’un point de 
vue temporel pour les deux populations, mais spatialement plus proche du point de changement de 
direction pour les patients hémiparétiques comparativement aux sujets sains. 

Au-delà de vérifier cette séquence de rotation axiale avec nos données, celles-ci nous permettraient 
surtout de mettre en lien la rotation de la tête avec les paramètres de stabilité, de trajectoire et les données 
cliniques des patients hémiparétiques. En effet, nous pouvons nous demander si les déficits sensori-
moteurs et de stabilité présentés par les patients hémiparétiques jouent un rôle dans le comportement 
d’anticipation de rotation de la tête, si celle-ci est vérifiée. 

L’intégration de l’ensemble des afférences (visuelles, vestibulaires, proprioceptives et 
extéroceptives) contribue à l’orientation et la localisation du corps dans l’espace à la fois pour savoir se 
situer et pour s’orienter vers une direction future. De plus, la présence de stratégie anticipatrice lors de 
la privation visuelle peut être expliquée par l’utilisation d’informations proprioceptives et vestibulaires et 
témoigner de l’utilisation de la mémoire spatiale (Prévost et al., 2003). A la suite d’un AVC, des troubles 
sensitifs et cognitifs sont fréquemment retrouvés, des troubles visuels parfois et de manière générale, il 
existe une difficulté à mettre en place des ajustements basés sur l’intégration multisensorielle (Fisher et 
al., 2000). Il apparait donc légitime de s’interroger sur le comportement anticipatoire de rotation de la 
tête spécifiquement chez des patients présentant des troubles sensitifs, des troubles spatiaux comme 
une négligence spatiale ou des troubles de la mémoire spatiale. Cette analyse est une perspective 
envisageable du fait de l’enregistrement des mouvements de la tête des participants lors de nos 
expérimentations. 

II . 2   Une caractérisation de la trajectoire par son oscillation ?

Notre travail a proposé l’étude de la stabilité des sujets par la quantification de leurs déplacements 
du COM. Le COM était déterminé par l’approche multisegmentaire et, son amplitude et sa vitesse de 
déplacements étaient calculées à chaque cycle de marche, par rapport à la ligne d’avancement des 
sujets. 

Par ailleurs, les trajectoires locomotrices investiguées dans l’étude 4 étaient d’allure « ondulée » 
pour les patients hémiparétiques par rapport aux sujets sains dont les trajectoires semblaient plus 
«  lisses  ». La figure 9 illustre cette différence d’allure de trajectoires observées chez un patient 
hémiparétique et un sujet sain.
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 Figure 9 : Trajectoires locomotrices lors du TUG chez un patient hémiparétique (à gauche) et un sujet sain (à 
droite).

Le TUG comprend la combinaison d’un mouvement d’avancement vers une cible (le cône pour le 
contourner puis le siège pour s’y asseoir) et d’un mouvement de changement d’orientation progressive 
du corps pour préparer le demi-tour (par contournement de l’obstacle puis demi-tour avant de s’asseoir). 
Cette « ondulation » observée peut alors être interprétée comme une oscillation, à l’échelle du cycle de 
marche, au cours d’un mouvement d’ensemble (le mouvement d’avancement).

•	 Caractérisation de l’oscillation de la trajectoire

Nous pouvons nous interroger sur la capacité de notre approche de quantification des 
déplacements du COM à traduire cette oscillation. Tout d’abord l’amplitude de déplacement du COM 
correspond à l’écart entre deux positions extrêmes au cours d’un cycle de marche. Nous avons donc 
une donnée d’amplitude à chaque cycle de marche. Davantage de points sur un cycle de marche 
permettraient d’être plus représentatif d’une trajectoire courbe et donc de mettre plus en évidence les 
oscillations. D’autre part, la ligne d’avancement est rectiligne ; elle correspond ainsi à la droite entre 
la position du marqueur sacrum en début et en fin de cycle. Nous pouvons supposer que la ligne 
d’avancement faite d’une succession de lignes rectilignes n’est pas suffisamment représentative de la 
trajectoire curviligne décrite par les sujets au cours du TUG. Au final, caractériser de manière optimale les 
oscillations observées nécessiterait la prise en compte de tous les points de la trajectoire plutôt qu’une 
donnée par cycle et nécessiterait de considérer une ligne d’avancement curviligne. Il apparait dans ce 
cas difficile de définir une telle ligne. Nous proposons donc de partir du postulat que la caractérisation 
de l’oscillation de la trajectoire du COM peut s’envisager sans référence à une ligne d’avancement.
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Par ailleurs, la création de la ligne d’avancement et la détermination de l’amplitude de déplacement 
du COM se font à chaque cycle ; elles sont donc dépendantes du temps. Or les sujets sains et les 
patients hémiparétiques ont des vitesses et des durées d’exécution du TUG différentes. Il serait donc 
légitime de proposer une méthode s’affranchissant de cette composante temporelle pour comparer 
l’oscillation de ces deux populations.

Aussi, il nous semble que caractériser l’oscillation ne peut se résumer à la prise en compte 
de l’amplitude seule. En effet, deux trajectoires peuvent avoir la même amplitude d’oscillation, mais 
l’une peut avoir un plus grand nombre d’oscillations que l’autre sur une même longueur. Considérer la 
longueur en plus de l’amplitude de l’oscillation apparait pertinent pour mieux caractériser l’oscillation. 
La figure 10 illustre ce propos.

Figure 10 : Considération de l’amplitude et de la longueur de la trajectoire pour caractériser l’oscillation.

Pour nous affranchir de la différence de vitesse, nous proposons une analyse de l’oscillation 
par une approche géométrique, uniquement spatiale. Cette approche géométrique se baserait sur 
les paramètres intrinsèques de la courbe comme la variation de la courbure en fonction de l’abscisse 
curviligne.

•	 Association entre oscillation et stabilité

L’amplitude et la vitesse du COM analysées dans notre étude nous renseignaient sur la stabilité 
des patients hémiparétiques. Ces déplacements du COM et les oscillations de la trajectoire observées 
s’avèrent être deux éléments différents. Après la caractérisation de l’oscillation de la trajectoire, nous 
émettons l’hypothèse que l’excès d’oscillations observé chez les patients hémiparétiques traduit 
également un défaut de stabilité des patients. Un autre objectif de cette perspective est d’étudier la 
corrélation entre la mesure de l’oscillation et la stabilité du sujet évaluée par l’amplitude et la vitesse des 
déplacements du COM. Cette possible autre caractérisation de la stabilité des patients hémiparétiques 
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pourrait nous permettre de mieux déterminer la phase du TUG particulièrement concernée par la 
stratégie de compromis entre la stabilité et la trajectoire.

II . 3   Le TUG avec contrainte

II . 3 .1  Contrainte environnementale proprioceptive: la surface de marche

	 Au-delà de l’intérêt d’une tâche de navigation pour évaluer les déplacements des patients 
hémiparétiques, il semble complémentaire de considérer différentes modalités du contexte 
environnemental comme le type de terrain par exemple.	

La marche sur terrain varié fait partie des contraintes environnementales rencontrées au quotidien 
et pouvant influencer le comportement locomoteur. Plusieurs études montrent que la marche sur terrain 
varié engendre de l’instabilité et entraine des modifications cinématiques de la marche (Menz et al., 
2003), (Thies et al., 2005), (Rogers et al., 2008), (Marigold and Patla, 2008). Ainsi, la marche sur surface 
souple ou obstacles mous induit, chez des sujets jeunes et des sujets âgés, une diminution de la vitesse 
de marche et de la cadence (Menz et al., 2003), (Rogers et al., 2008). Une autre étude chez des sujets 
âgés trouve les mêmes résultats et une augmentation de la largeur de pas et de la durée du cycle de 
marche (Thies et al., 2005). Sur le plan de la cinématique articulaire, Barbara et al (2012) montrent que 
les sujets jeunes et âgés associent une augmentation de leur flexion de hanche et de genou lors de la 
phase oscillante à une diminution de leur vitesse de marche lorsqu’ils marchent sur un tapis mou par 
rapport à un sol rigide (Bárbara et al., 2012). De plus, Marigold et Patla (2008) montrent que la marche 
en terrain varié augmente davantage les déplacements du tronc chez les sujets âgés que chez les sujets 
jeunes, traduisant une difficulté à maintenir la stabilité notamment dans le plan médio-latéral (Marigold 
and Patla, 2008). Cependant, une diminution de la vitesse de marche et de la longueur des pas adoptée 
par les sujets âgés suggérait une marche précautionneuse afin de maintenir la stabilité. De manière 
similaire, les auteurs des études présentées suggèrent une stratégie conservatrice (précautionneuse) 
avec des adaptations de la marche visant à maintenir la stabilité (ou éviter le risque d’accrochage du 
pied dans l’étude de Barbara et al) en situation de perturbation proprioceptive.

	 Par ailleurs, certains auteurs se sont intéressés au poids des afférences sur le contrôle de 
tâches de navigation. Une modification des trajectoires locomotrices est, en effet, mise en évidence 
en cas de perturbation du système vestibulaire, suggérant que le système vestibulaire joue un rôle 
important dans les déplacements du corps dans l’espace (Glasauer et al., 1995), (Glasauer et al., 
2002), (Kennedy et al., 2005). A l’instar des afférences vestibulaires, nous pouvons émettre l’hypothèse 
qu’une perturbation proprioceptive induite par une marche sur un tapis mou pourrait entrainer une 
modification de la trajectoire locomotrice lors de tâches de navigation. 

Chez les patients hémiparétiques, plusieurs auteurs montrent qu’une perturbation extéroceptive 
et/ou proprioceptive (induite par un tapis mou ou par une plateforme mobile) augmente les oscillations 
posturales de ces patients, par rapport à une surface stable et par rapport à des sujets sains (Marigold 
et al., 2004b), (Yu et al., 2012). Notons que nous n’avons pas retrouvé d’études sur l’influence d’un 
tapis mou sur les paramètres de marche ou de trajectoire des patients hémiparétiques. Ceci étant, au 
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vu des résultats concernant les oscillations posturales, nous pouvons supposer qu’une marche sur 
tapis mou perturbe la stabilité des patients hémiparétiques et induit des modifications locomotrices.

	 Medley et Thompson (2005) se sont intéressés à l’impact de différentes conditions dont une 
condition environnementale, sur la performance au TUG chez des sujets jeunes et âgés (Medley and 
Thompson, 2005). Ces auteurs ont ainsi évalué la performance au TUG sous une condition cognitive 
(calcul), une condition manuelle (transporter un verre d’eau), une condition environnementale (marche 
sur une surface souple) et la combinaison de ces différentes conditions (Medley and Thompson, 
2005). Leurs résultats montrent que la condition sur tapis souple n’engendrait pas de différence de la 
performance au TUG pour les deux groupes. A l’inverse, l’adjonction de tâches cognitive et manuelle 
augmentait le temps pour effectuer le TUG, pour les deux groupes, mais de manière plus importante 
chez les sujets âgés. Les auteurs suggèrent que la rigidité du tapis utilisé n’était pas suffisante pour 
induire une instabilité. Nous pouvons également envisager que les possibles changements induits ne 
se traduisaient pas par une modification de la performance chronométrique. 

Au final, il semble légitime de s’interroger sur les adaptations mises en place par les patients 
hémiparétiques lorsque le TUG est effectué sur tapis mou, ce qui engendre une perturbation 
proprioceptive. Notre perspective serait alors de caractériser l’organisation des patients hémiparétiques 
lors de tâches de navigation avec une contrainte proprioceptive imposée et de définir les spécificités 
d’organisation selon la phase du TUG. Aussi, nous pourrons déterminer le poids des afférences 
proprioceptives sur les stratégies développées par ces patients lors d’une navigation en environnement 
contraint.

II . 3 .2  Contrainte cognitive : la double tâche

Notre travail n’a pas porté sur l’étude des troubles des fonctions cognitives et leur impact sur 
les tâches de navigation comme celles du TUG. Etudier ces implications nous parait une perspective 
intéressante pour caractériser l’organisation des patients hémiparétiques présentant des troubles 
cognitifs lors de tâches de navigation et déterminer la ou les stratégie(s) mise(s) en place par les 
patients dans ce contexte. Deux précédentes études ont par exemple mis en évidence des liens entre 
négligence et trajectoire locomotrice chez des patients hémiparétiques, lors d’une marche en ligne 
droite ou dans un contexte de réalité virtuelle (Huitema et al., 2006), (Aravind and Lamontagne, 2014). 
Ainsi, les patients présentant une négligence unilatérale spatiale ont une trajectoire de marche déviée 
lorsqu’une marche en ligne droite vers une cible leur est demandée (Huitema et al., 2006). Une récente 
étude a analysé l’influence de l’héminégligence faisant suite à un AVC sur une tâche de navigation 
évaluée en réalité virtuelle (Aravind and Lamontagne, 2014). Les collisions concernaient les patients 
négligents avec davantage de difficulté dans la perception des obstacles situés du côté controlésionnel, 
ceux qui maintenaient une plus petite distance de l’obstacle et qui initiaient tardivement une stratégie 
d’évitement. De plus, alors que les performances aux tests papier crayon mettant en évidence une 
négligence ne montraient pas de différence entre les patients entrant en collision et ceux évitant les 
obstacles, l’analyse des déplacements locomoteurs en environnement virtuel pointait les patients à 
risque. Cette étude montre l’intérêt d’évaluer les patients victimes d’un AVC en condition de tâches 
de navigation dans un environnement avec obstacles, puisque les troubles des fonctions cognitives 
influencent ces tâches. Ce genre d’approche en environnement réel serait légitime pour apprécier la 
récupération de tels troubles et leurs impacts sur les déplacements quotidiens des patients.
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D’autre part, évaluer l’organisation biomécanique des patients hémiparétiques lors de l’exécution 
de tâches de navigation en condition de double tâche pourrait permettre de déterminer le poids des 
fonctions attentionnelles sur les stratégies développées par ces patients et de quantifier l’automaticité 
de ces tâches de navigation. Plusieurs études ont évalué les effets d’une condition de double tâche 
sur la marche chez des patients hémiparétiques. Yang et al (2007) montrent qu’effectuer deux tâches 
motrices simultanément comme marcher en transportant un plateau chargé ou en boutonnant une 
veste induit, chez les patients hémiparétiques, une diminution de la vitesse de marche, de la  cadence 
et de la longueur de pas dans des proportions significativement plus importantes que chez les sujets 
sains (Yang et al., 2007). Lorsque c’est une tâche cognitive qui est ajoutée au cours de la marche, les 
patients hémiparétiques réduisent leur vitesse de marche et augmentent leur phase de double appui 
(Bowen et al., 2001). Ces résultats suggèrent que la double tâche affecte la marche et la stabilité au 
cours de la marche chez ces patients. Récemment Baetens et al (2013) ont comparé l’influence de 
deux tâches cognitives sur la marche de patients hémiparétiques (Baetens et al., 2013). Les résultats 
mettaient en évidence une dégradation des paramètres spatio-temporels de la marche lorsque celle-ci 
est associée à une tâche de fluence verbale ou à une tâche de calcul (impliquant la mémoire de travail). 
Cependant, seule la double tâche impliquant la mémoire de travail permet de discriminer les patients 
hémiparétiques chuteurs des non-chuteurs (par une diminution de la longueur de l’enjambée et de la 
longueur du pas côté non-parétique) (Baetens et al., 2013).

Quelques auteurs ont étudié l’influence d’une double tâche sur la performance chronométrique 
au TUG. Shumway-Cook et al (2000) ont évalué la performance au TUG sous 3 conditions à savoir 
le TUG en simple tâche, le TUG avec l’ajout d’une tâche cognitive (tâche de calcul) et le TUG avec 
l’ajout d’une tâche motrice (transport d’une tasse pleine), chez des sujets âgés (Shumway-Cook et al., 
2000). Les auteurs trouvent une augmentation du temps pour réaliser le TUG lorsqu’une autre tâche 
lui était ajoutée. Les mêmes conditions expérimentales ont récemment été évaluées chez des patients 
hémiparétiques ayant subi un AVC (Manaf et al., 2014). Les résultats montrent que l’adjonction de la 
tâche cognitive et de la tâche motrice au TUG engendre une augmentation de la durée et du nombre 
de pas comparativement au TUG réalisé en simple tâche, sans différence entre les deux conditions de 
double tâche. Au-delà de l’observation d’une diminution de la performance au TUG, il existe un réel 
intérêt à mettre en évidence les mécanismes impliqués dans la détérioration de cette performance. Une 
évaluation du TUG instrumentée (par approche biomécanique) en condition de double tâche permettrait 
de déterminer les mécanismes faisant l’objet de modifications et ayant un impact sur l’organisation et 
les stratégies utilisées par les patients. L’augmentation de la complexité d’une tâche locomotrice induit 
davantage de sollicitations cognitives (Yogev-Seligmann et al., 2008), il apparait donc légitime d’étudier 
l’impact d’un paradigme de double tâche sur des tâches de navigation comme celles composant le 
TUG. 

Pour conclure cette partie, étudier les associations entre les troubles des fonctions cognitives et 
le comportement locomoteur au cours de tâches de navigation chez des patients hémiparétiques ayant 
subi un AVC s’avère une perspective intéressante. De même, il apparait légitime de mettre en évidence 
les mécanismes impliqués dans la diminution de la performance au TUG, de déterminer l’organisation 
globale des patients et la ou les stratégies mises en place lors d’une double tâche. Il semble en effet 
légitime de se demander si la stratégie de compromis entre la stabilité, la trajectoire et la performance 
mise en évidence dans le cadre de notre travail se retrouve dans un contexte différent de tâches de 
navigation (contrainte environnementale ou cognitive) ou si de nouvelles stratégies émergent.
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Figure 4: Minimum Foot Clearance (MFC) lors de la marche. Déplacement vertical du marqueur orteil au 

cours d’un cycle de marche montrant que le MFC a lieu au milieu de la phase oscillante (Begg et al., 2005). 

Figure 5: Capture d’écran d’une scène de visualisation du set de marqueurs utilisé pour la modélisation 

du corps entier. Exemple d’identification et de suivi d’un des capteurs du pelvis par les caméras 1-3-5-6.

Figure 6: Capture d’écran d’une scène de demi-tour (vue sagittale) d’un patient hémiparétique lors de la 

passation du TUG au laboratoire.

Figure 7: Représentation de la distance de Hausdorff pour une phase du Timed Up and Go.

Figure 8: Représentation de la déformation temporelle dynamique (DTW) pour une phase du Timed Up 
and Go (Partie 1 : Matrice de la DTW pour les séquences A et B et chemin optimal en rouge minimisant le 
coût des distances; Partie 2 : Représentation de la DTW lors d’une phase du TUG ; Partie 3 : Matrice de la 
DTW pour les trajectoires A et B lors de la phase considérée du TUG et chemin optimal minimisant le coût 

des distances pour cette phase).

Figure 9: Trajectoires locomotrices lors du TUG chez un patient hémiparétique (à gauche) et un sujet sain 

(à droite).

Figure 10: Considération de l’amplitude et de la longueur de la trajectoire pour caractériser l’oscillation.
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Annexe n°1: placement de marqueurs selon le modèle Helen Hayes (Reference Manual Orthotrack 
6.5 Gait Analysis Sofware)

Légendes: Top Head : sommet de la tête (dans l’alignement des marqueurs en avant et arrière de la tête) ; Front head : avant 
de la tête (à la même hauteur que le marqueur Rear Head) ; Rear Head : arrière de la tête (à la même hauteur que le marqueur 
Front Head) ; R. Shoulder : épaules droite (sommet de l’acromion) ; L. Shoulder : épaule gauche (sommet de l’acromion) ;  
R.  Elbow  : coude droit (épicondyle latéral de l’humérus)  ; L.  Elbow  : coude gauche (épicondyle latéral de l’humérus)  ;  
R. Wrist : poignet droit (milieu des styloïdes radiale et ulnaire, face dorsale) ; L. Wrist : poignet gauche (milieu des styloïdes 
radiale et ulnaire, face dorsale) ; Offset pointe de la scapula droite ; R. Asis : épine iliaque antéro-supérieure droite ; L. Asis : épine 
iliaque antéro-supérieure gauche ; V. Sacral : partie supérieure du sacrum, jonction avec L5 ; R. Thigh : segment cuisse droit ;  
L. Thigh  : segment cuisse gauche  ; R. Knee  : condyle latéral du fémur droit, dans l’axe de flexion/extension de genou  ;  
L. Knee : condyle latéral du fémur gauche, dans l’axe de flexion/extension de genou ; R. Knee medial : condyle médial du 
fémur droit, dans l’axe de flexion/extension de genou ;   L. Knee medial  : condyle médial du fémur gauche, dans l’axe de 
flexion/extension de genou ; R. Shank  : segment jambier droit  ; L. Shank  : segment jambier gauche ; R. Ankle  : malléole 
latérale de la cheville droite dans l’axe de flexion/extension de cheville  ; L. Ankle  : malléole latérale de la cheville gauche 
dans l’axe de flexion/extension de cheville  ; R. Ankle Medial  : malléole médiale de la cheville droite dans l’axe de flexion/
extension de cheville ; L. Ankle Medial : malléole médiale de la cheville gauche dans l’axe de flexion/extension de cheville ;  
R. Heel : partie postérieure du calcaneum droit dans l’alignement du marqueur orteil ; L. Heel : partie postérieure du calcaneum 
gauche dans l’alignement du marqueur orteil ; R. Toe : entre le 2eme et le 3eme métatarse droit dans l’alignement du marqueur talon ;  
L. Toe : entre le 2eme et le 3eme métatarse gauche dans l’alignement du marqueur talon.
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Annexe n°2: Données de l’évaluation sensitive (superficielle et profonde) des 29 patients 
hémiparétiques inclus.

Genou Cheville Dos du pied Plante de pied Hanche Genou Cheville Orteils

1 2 2 2 2 3 3 3 3

2 1 1 1 1 2 2 2 2

3 2 2 2 2 3 3 3 3

4 2 2 2 1 3 3 2 0

5 2 2 2 1 3 1 1 1

6 2 2 2 2 3 3 3 3

7 2 1 1 1 3 3 3 3

8 2 2 2 2 3 3 3 1

9 2 2 2 2 3 3 3 3

10 2 2 2 2 3 3 3 2

11 2 2 2 2 3 3 3 3

12 1 1 1 1 2 2 2 2

13 2 2 2 2 3 3 3 3

14 2 2 2 2 3 3 3 3

15 2 2 2 2 3 3 3 3

16 1 1 1 1 2 2 0 0

17 2 2 2 2 3 3 3 3

18 1 1 1 1 2 2 1 1

19 1 1 1 1 3 3 2 2

20 1 1 1 1 3 3 3 3

21 2 2 1 1 3 3 3 2

22 1 1 1 1 3 2 2 1

23 1 1 1 1 3 2 1 0

24 1 1 1 1 2 1 1 0

25 1 1 1 1 3 2 2 2

26 2 2 2 2 3 3 3 3

27 2 2 1 2 3 3 2 1

28 2 2 2 2 3 3 3 3

29 1 1 1 1 3 2 1 0

Médiane 2 2 2 1 3 3 3 2

Sujets

Sensibilité superficielle - pression Sensibilité profonde
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Annexe n°3: Données de la spasticité et de la motricité volontaire des 29 patients hémiparétiques 
inclus.

Extenseurs 
genou

Fléchisseurs 
genou

Fléchisseurs 
plantaires 
cheville 
genou en 
flexion

Fléchisseurs 
plantaires 
cheville 
genou en ext

Griffe 
orteils

Fléchisseurs 
hanche

Extenseurs 
hanche

Extenseurs 
genou

Fléchisseurs 
genou

Fléchisseurs 
dorsaux

Fléchisseurs 
plantaires

1 0 0 1 1 0 4 4 5 4 4 5

2 1 0 2 2 0 4 2 4 3 3 2

3 1 0 1 1 1 4 3 4 4 4 2

4 0 0 0 1 0 5 4 5 4 4 3

5 0 0 0 1 1 3 2 4 3 3 1

6 1 0 0 0 1 4 3 5 3 3 0

7 1 0 0 0 0 4 4 5 3 3 2

8 0 0 2 2 0 5 4 5 4 5 4

9 0 0 2 2 1 4 4 4 3 4 2

10 1 0 0 0 0 3 2 4 3 4 2

11 2 2 0 0 1 4 4 5 4 3 1

12 2 0 1 1 1 4 2 5 3 4 2

13 0 1 0 1 1 4 2 5 3 4 2

14 1 0 1 1 1 4 3 5 1 0 0

15 2 0 0 0 1 3 2 5 3 4 1

16 0 0 0 0 1 4 3 5 3 4 2

17 0 0 0 1 0 5 4 5 4 5 5

18 2 0 2 2 1 4 4 5 2 3 1

19 3 1 3 3 1 4 2 5 2 0 0

20 3 1 2 2 0 4 2 5 2 3 1

21 1 1 2 2 1 3 3 4 2 0 1

22 3 0 2 2 1 4 4 4 2 3 1

23 0 0 1 1 1 4 4 4 3 4 2

24 0 0 0 0 1 4 4 5 3 4 0

25 1 0 0 0 1 4 4 5 4 4 2

26 3 0 0 0 0 4 4 4 3 4 3

27 1+ 0 2 3 1 4 4 4 4 3 2

28 0 0 0 0 0 4 2 5 4 1 1

29 2 0 3 3 0 4 4 5 4 4 2

Médiane 1 0 1 1 1 4 4 5 3 4 2

Sujets

Spasticité Motricité volontaire
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Annexe n°4: Données des évaluations fonctionnelles et les données relatives aux chutes des 
29 patients hémiparétiques inclus.

Sujets Score 
Barthel NFAC BBS ABC scale Fréquence 

chute Lieu chute Circonstance chute

1 100 8 54 73,8 1 intérieur baignoire

2 90 6 50 75,9 2 intérieur 1 en se levant, 1 lors demi-tour

3 100 7 49 56,9 1 extérieur hypotension

4 100 8 54 95,6 1 extérieur velo

5 100 7 51 65,0 1 intérieur demi-tour

6 100 6 51 81,9 0 - -

7 100 6 49 70,6 1 intérieur demi-tour

8 100 8 54 94,4 2 intérieur 1 enjambement obstacle, 1 choc 
obstacle

9 100 7 51 85,0 1 extérieur escalier

10 90 6 49 71,3 1 intérieur trébuchement tapis

11 100 8 52 88,1 1 extérieur enjambement obstacle

12 100 6 46 64,4 0 - -

13 95 6 51 51,3 0 - -

14 100 8 50 86,3 0 - -

15 100 6 45 71,3 1 intérieur marche

16 100 6 50 68,1 0 - -

17 95 8 54 78,8 0 - -

18 90 6 47 80,0 1 intérieur en se levant

19 95 6 51 86,9 1 extérieur en sortant de la voiture

20 95 6 49 91,9 1 intérieur marche espace étroit

21 95 6 50 86,3 0 - -

22 95 7 52 93,1 0 - -

23 95 6 52 79,4 0 - -

24 90 6 50 46,9 0 - -

25 95 6 48 65,6 2 intérieur et extérieur marche espace encombré

26 95 6 53 66,9 0 - -

27 100 7 51 64,4 1 extérieur marche espace encombré

28 100 6 52 82,5 0 - -

29 100 6 50 90,0 0 - -

Médiane 100 7 51 78,8 1 - -





Characterization of kinematics and trajectory of the mass center of 
hemiparectic patients during a navigation task

Keywords : Stroke, navigation, kinematics, stability, trajectory, strategy, assessment.

Abstract

The gait characteristics of patients with hemiparesis are usually assessed during stable, 
straight-line gait. Clinical tests are mostly based on timed performance, although biomechanical 
gait analysis may be carried out. The analysis of navigational tasks that involve constraints 
encountered in daily life is necessary to increase understanding of gait deficits. The Timed Up 
and Go test (TUG) includes oriented gait towards a target, and turning tasks, typical of real-life 
gait. However, the simple analysis of performance time does not provide sufficient information 
regarding actual performance of the tasks.

	 The main aim of this thesis was to characterize the locomotor displacements of hemiparetic 
patients during navigational tasks, such as those involved in the TUG. To this end, we carried 
out a biomechanical analysis of gait during the three navigational tasks of the TUG (oriented gait 
to the target, turning and oriented gait to the seat). We analysed the kinematics, stability and 
locomotor trajectories of patients and healthy subjects. This work is original because it provides 
a biomechanical characterization of the organization of gait in patients with hemiparesis during 
navigational tasks, using innovative parameters.

The longer performance time in hemiparetic patients, compared with healthy subjects, 
was related to a decrease in the majority of spatio-temporal and joint kinematic parameters. 
Moreover, the results showed that oriented gait tasks were controlled by the same parameters 
in hemiparetic patients and healthy subjects, but in different proportions. In contrast, the turning 
task was controlled by different, specific parameters. Organizational differences between 
hemiparetic patients and healthy subjects were also highlighted, namely a lack of stability, 
slowing during the turn and deviation from the trajectory by the patients. These results suggest 
that hemiparetic patients use a strategy which is a compromise between stability, trajectory 
and performance for the optimal achievement of navigational tasks, such as these involved in 
the TUG. The implications of this work for the clinical management of hemiparetic patients are 
explained.



Caractérisation de la cinématique et de la trajectoire du centre de masse 	 
des patients hémiparétiques lors d’une tâche de navigation 

Mots clés : Hémiparésie, navigation, cinématique, stabilité, trajectoire, stratégie, évaluation

Résumé

Les patients hémiparétiques présentent des troubles de la marche couramment évalués, 
lors d’une marche stabilisée en ligne droite, par des tests cliniques chronométriques et 
parfois par une analyse quantifiée de la marche explorant les paramètres biomécaniques de 
celle-ci. L’analyse de tâches de navigation dans l’environnement, impliquant des contraintes 
rencontrées au quotidien, apparait pertinente parallèlement à l’analyse de la marche stabilisée 
en ligne droite. Le test du Timed Up and Go (TUG) comprend des tâches de marche orientée 
vers une cible et de demi-tour, ce qui correspond à un grand nombre de déplacements 
effectués dans la vie quotidienne. Cependant la performance chronométrique obtenue à l’issue 
de ce test ne permet pas la compréhension des mécanismes à l’origine de cette performance.

L’objectif principal de cette thèse est de caractériser les déplacements locomoteurs des 
patients hémiparétiques au cours de tâches de navigation telles que celles impliquées dans le  
TUG. Pour cela nous proposons une analyse biomécanique de leurs déplacements au cours 
des 3 phases de navigation du TUG (marche orientée vers l’obstacle, demi-tour et marche 
orientée vers le siège). Cette analyse concerne l’étude de la cinématique, de la stabilité et des 
trajectoires locomotrices de ces patients et de sujets sains. L’originalité de ce travail repose 
sur la caractérisation biomécanique de l’organisation des patients hémiparétiques lors de 
tâches de navigation, au moyen de paramètres innovants.

La diminution de la performance chronométrique observée chez les patients 
hémiparétiques, comparativement aux sujets sains, s’explique tout d’abord par une diminution 
de la majorité des paramètres spatio-temporels et de la cinématique articulaire lors des 3 
phases de navigation des patients. De plus, les résultats montrent que  les phases de marche 
orientée sont contrôlées par les mêmes paramètres pour les patients hémiparétiques et les 
sujets sains, mais avec une pondération différente et, que la phase du demi-tour est contrôlée 
par des paramètres spécifiques différents. Les résultats mettent également en évidence des 
différences organisationnelles entre les patients hémiparétiques et les sujets sains, à savoir 
un défaut de stabilité, un ralentissement lors du demi-tour et une déviation de la trajectoire 
locomotrice pour les patients. Ces résultats suggèrent que les patients hémiparétiques 
mettent en place une stratégie consistant en un compromis entre la stabilité, la trajectoire et la 
performance pour une réalisation optimale des tâches de navigation telles que celles réalisées 
lors du TUG. Des répercussions sur la prise en charge clinique des patients hémiparétiques 
peuvent être envisagées à l’issue de ce travail.




