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"La connaissance est une navigation dans un océan d'incertitudes a travers des archipels de certitudes.”
Edgar Morin



INTRODUCTION

[accident vasculaire cérébral (AVC) se définit, selon I’'Organisation mondiale de la santé, comme
« un déficit neurologique soudain d’origine vasculaire persistant plus de 24h ou entrainant la mort dans
les 24h». I’ AVC constitue la premiére cause de handicap acquis de I’adulte dans les pays industrialisés.
Lincidence annuelle est d’environ 130 000 nouveaux cas par an en France (prévalence estimée a 400
000 patients) (Fery-Lemonnier, 2009). Le nombre de personnes hospitalisées pour AVC a augmenté
de 16,5% entre 2002 et 2010 en lien avec 'augmentation et le vieillissement de la population. Le cot
socio-économique de cette pathologie est trés élevé avec une dépense annuelle d’environ 8,3 milliards
d’euros, notamment liée a I'importance des séquelles neurologiques. En France, 225000 personnes
sont classées de facon permanente en affection longue durée « accident vasculaire cérébral invalidant »
(Fery-Lemonnier, 2009).

Suite aun AVC, les patients présentent des troubles cognitifs et une hémiplégie ou une hémiparésie
avec des déficits sensori-moteurs a I'origine notamment de limitations pour les déplacements et les
activités de la vie quotidienne. Bien que la majorité des patients retrouve une capacité de marche (50
a 80%) (Andrews et al., 1981), (Skilbeck et al., 1983), (Partridge et al., 1987), la principale limitation
rapportée par les patients a la suite d’un AVC est la perte d’'indépendance a la marche (Bohannon
et al.,, 1988), (Mumma, 1986) (Pound et al., 1998). La rééducation de la marche fait donc figure de
priorité pour les patients présentant des séquelles d’AVC (Bohannon et al., 1988), (Mumma, 1986). Une
évaluation précise des déplacements a pour objectif d’orienter et d’optimiser la rééducation de cette
fonction.



Introduction

La marche implique de multiples facteurs neurophysiologiques et biomécaniques. Le déséquilibre
nécessaire au mouvement doit étre maitrisé au cours de la marche pour assurer la stabilité de celle-
ci. Lorsque la stabilité au cours de la marche est perturbée, un risque de chute, et de possibles
complications, peut survenir, ce qui peut étre le cas a la suite d’'un AVC.

En milieu clinique, I'évaluation de la marche passe par des tests fonctionnels et peut étre
complétée par une analyse quantifiée de la marche (AQM) en laboratoire. 'AQM a rapidement constitué
une aide au diagnostic permettant une prise en charge ciblée des patients hémiparétiques (Yavuzer et
al., 2008), (McGinley et al., 2009). Ceci étant, les déplacements locomoteurs de la vie quotidienne ne
peuvent se résumer pour le patient a une marche stabilisée en ligne droite sans objectif fonctionnel
et sans contraintes environnementales. Ces dernieres années des études analysant la réalisation de
taches fonctionnelles de la vie quotidienne (assis-debout, lever et marcher vers un but) par des patients
hémiparétiques se sont multipliées. L objectif de ce travail est de compléter ces études et de proposer
au patient une évaluation quantifiée par analyse tridimensionnelle de la marche de déplacements
fréquemment effectués dans la vie quotidienne.

Le Timed up and go (TUG) est un test couramment utilisé en routine clinique évaluant une partie
de ces activités fonctionnelles quotidiennes telles que se lever d’une chaise, marcher vers une cible,
effectuer un demi-tour et retourner s’asseoir. Par conséquent, I'objectif de ce travail est de quantifier
et d’analyser les déplacements locomoteurs des patients hémiparétiques lors de la réalisation de ce
test. Les déplacements locomoteurs au cours du TUG comprennent 3 phases que sont les phases de
marche aller et retour et la phase de demi-tour. Une telle évaluation basée sur I’étude des parametres
spécifiques tels que la cinématique, la stabilité dynamique et les trajectoires locomotrices utilisées par
les patients au cours des phases de déplacement du TUG pourrait permettre de mieux comprendre les
déficits et les facteurs de risque de chute des patients hémiparétiques. Ces connaissances pourraient
ainsi améliorer et mieux guider leur prise en charge thérapeutique afin que cette derniére soit plus
spécifigue et mieux adaptée aux besoins des patients.

La premiére partie de ce document présente le contexte théorique dans lequel s’inscrit ce travail, a
savoir les déficiences sensori-motrices et limitations de capacités faisant suite a un AVG, la cinématique
de marche, la navigation dans I'espace et une approche de la stabilité au cours de la marche chez les
sujets sains et les patients hémiparétiques.

La seconde partie déecrit la méthodologie générale mise en ceuvre.

La troisieme partie présente les déplacements locomoteurs de sujets hémiparétiques et de sujets
sains, quantifiés par analyse quantifiée du mouvement, lors de la réalisation du TUG. Cette troisieme
partie s’articule autour de 4 études. Les deux premieres études analysent les parametres spatio-
temporels des phases de marche aller et retour et de demi-tour du TUG et mettent en évidence les
parametres les plus explicatifs de chacune de ces trois phases locomotrices pour les deux populations.
’étude 3 et I'étude 4 comparent respectivement les parametres de stabilité et la trajectoire locomotrice,
lors de ces mémes trois phases du TUG chez les patients hémiparétiques et les sujets sains.

Enfin, la quatrieme partie propose une discussion des résultats de nos études et des perspectives
qui en découlent.



CHAPITRE 1: CONTEXTE

I L’Accident Vasculaire Cérébral et ses répercussions

1.1 L’Accident Vasculaire Cérébral

’accident vasculaire cérébral (AVC) est, dans 80% des cas, provoqué par une ischémie (ou
infarctus cérébral), causée par une occlusion résultant d’'un thrombus, d’'un embole ou d’une
hypoperfusion systémique. L'ischémie prive les cellules nerveuses d’oxygene et de glucose entrainant
une nécrose cellulaire (irréversible) et une pénombre ischémique périphérique.

Dans 20% des cas, une hémorragie, méningée ou cérébrale, peut étre a I'origine de 'AVC
(Caplan, 1997). Les AVC hémorragiques sont caractérisés par la rupture d’un vaisseau causée le plus
souvent par une hypertension artérielle, un anévrisme, une malformation vasculaire ou des troubles de
I’'hémostase (Hauw JJ, Duyckaerts C, 1993). L’hématome induit une compression des structures.

Les facteurs de risque different selon le type d’AVC ; on retrouve le plus souvent I’athérosclérose,
le diabete, I'hypertension, les troubles cardiaques et le tabagisme (Caplan, 1997). La fréequence des
AVC augmente avec I'age et le vieillissement du systeme artériel cérébral.

La symptomatologie de I'AVC va dépendre de I'étendue des Iésions et de la topographie, selon
que le territoire touché soit vascularisé par I'artére cérébrale antérieure, moyenne, postérieure ou
le systeme vertébro-basilaire. De fait, 'AVC va étre a 'origine d’altérations motrices, sensorielles et
cognitives, qui peuvent différer en fonction de la topographie I€sionnelle.
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Chapitre 1: Contexte

1.2 Les troubles moteurs

L'AVC est tres fréquemment a 'origine d’une atteinte de la voie cortico-spinale (support de la
commande motrice volontaire, figure 1) engendrant un syndrome pyramidal. Celui-ci se caractérise
par une atteinte de la motricité volontaire avec paralysie (ou parésie lorsqu’elle est incompléte) et perte
de la sélectivité de la commande (syncinésie), une hypertonie spastique et une anomalie des réflexes
ostéo-tendineux et cutanés (Arboix A, 2012). ’hémiplégie (ou hémiparésie lorsqu’elle est incomplete)
conséquente est controlatérale a la lésion cérébrale.

Figure 1: La voie pyramidale d’apres (Braillon, 1996).
1. Cellules pyramidales de I'aire 4 (premier neurone).

2. Faisceau pyramidal dans le pédoncule cérebral.

3. Décussation bulbaire du faisceau pyramidal croise.

4, Faisceau pyramidal direct.

5. Cormes antérieures de la moelle (deuxieme neurone)
6. Faisceau pyramidal croisé

[.2.1 Paralysie ou parésie
e Deéfinition
Les déficits de la commande motrice volontaire faisant suite a 'AVC peuvent étre complets
(paralysie) ou incomplets (parésie) et siegent controlatéralement a la Iésion hémisphérique. La paralysie

ou parésie se définit comme I'incapacité ou la difficulté a recruter volontairement les unités motrices des
muscles squelettiques pour générer un mouvement.
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e Mécanismes physiopathologiques

Cette difficulté s’explique par I'interruption de I'exécution de la commande motrice, par lésion de
la voie cortico-spinale. Le déficit moteur est alors proportionnel a la lIésion de la voie (Ward et al., 2006).
La topographie des paralysies et parésies dépend du siege des Iésions cérébrales, mais prédomine en
général en distal. Adams (1990) met ainsi en évidence une atteinte moins sévére des muscles proximaux
(hanche et genou) parétiques par rapport aux muscles distaux (cheville et orteils) chez les patients
atteints d’un syndrome pyramidal (Adams et al., 1990). Il existe également une distribution asymétrique
de la faiblesse musculaire de part et d’autre d’une articulation avec un déficit plus marqué des muscles
fléchisseurs du membre inférieur (Gracies, 2005). La réduction du trafic dans la voie cortico-spinale peut
induire également une dégénérescence secondaire de cette voie (Orita et al., 1994), (Maller et al., 2007).

[.2.2 Syncinésie
e Deéfinition

Une syncinésie est un mouvement involontaire survenant au cours d’un mouvement volontaire,
en lien avec une perte de la sélectivité de la commande, observable chez les patients ayant eu un AVC.

e Meécanismes physiopathologiques

Les syncinésies se manifestent par des co-contractions musculaires mettant en jeu d’autres
muscles que ceux volontairement recrutés. Trois types de syncinésies sont décrits a la suite d’'un AVC:
les syncinésies de coordination, les syncinésies d’imitation et les syncinésies globales.

Les syncinésies de coordination mettent en jeu des groupes musculaires synergiques. Une
syncinésie de coordination fréquemment rencontrée au membre inférieur est la coordination de la
dorsiflexion de cheville avec la flexion de hanche du membre parétique notamment observée lors de la
phase oscillante de la marche (Roche et al., 2015).

Les syncinésies d’imitation impliquent le membre controlatéral (mouvement de 'autre membre
inférieur pour imiter le mouvement du membre inférieur sollicité, ou incriminant les membres supérieurs)
ou le membre homolatéral (mouvement du membre supérieur pour imiter le mouvement du membre
inférieur sollicité ou inversement).

Les syncinésies globales mettent en jeu plusieurs groupes musculaires de tout un membre selon
des schémas globaux en flexion ou en extension.

Les origines des syncinésies sont assez peu connues et étudiées. Il semblerait que les syncinésies
d’imitation observées du cdté non-parétique soient en lien avec une activation du cortex sensori-moteur
non lésé (Nelles et al., 1998). Les syncinésies de coordination incriminant des muscles synergiques
semblent liées aux interconnexions segmentaires au niveau médullaire avec une facilitation des fibres
afférentes hétéronymes projetant sur les noyaux moteurs des muscles synergiques (Roche et al., 2015).
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[.2.3 Spasticité
e Définition

En phase aigle d’'un AVC sévere, une flaccidité initiale associée a une abolition des réflexes est
observée (Dietz and Sinkjaer, 2007). Dans la majorité des cas, une hypertonie spastique succede a la
phase de flaccidité.

La spasticité a été initialement définie par Lance (1980) comme « une augmentation vitesse
dépendante du réflexe tonique d’étirement et une augmentation des réflexes ostéo-tendineux, résultants
d’une hyperexcitabilité du réflexe d’étirement, une composante du syndrome pyramidal » (Lance J.,
1980). Au membre inférieur, la spasticité siege essentiellement sur les extenseurs.

e Meécanismes physiopathologiques

Les mécanismes explicatifs de la spasticité évoqués sont une augmentation de I'excitabilité
du motoneurone alpha, une diminution de l'activité des interneurones inhibiteurs au niveau spinal
(interneurones de I'inhibition présynaptique la, de I'inhibition récurrente, de I'inhibition réciproque la) et
une modification du contrdle supra-spinal. De plus, il existe une diminution du seuil de I'activation des
récepteurs sensibles a I'étirement musculaire (réponse réflexe pour une stimulation moins importante)
en lien avec une augmentation de la sensibilité des récepteurs a I'étirement musculaire (fuseau
neuromusculaire) elle-méme liée a une modification du contrble qu’exerce le motoneurone gamma sur
le fuseau neuromusculaire (Pandyan et al., 2005), (Brown, 1994).

1.3 Les troubles sensoriels

1.3.1 Les troubles sensitifs
e Définition

Les déficits de la sensibilité faisant suite a un AVC touchent 50% des patients (Carey, 1995),
peuvent étre complets (anesthésie) ou incomplets (hypoesthésie) et siegent du coté de I’hémiplégie.
La sensibilité superficielle (regroupant le tact, la douleur et le chaud/froid) et la sensibilité profonde
(regroupant la position des membres et le sens du mouvement) peuvent étre perturbées. De plus, les
patients peuvent présenter des troubles de la sensibilité subjective avec des allodynies (stimulation non
douloureuse ressentie comme douloureuse), des hyperpathies (douleur persistante a un stimulus répété
non douloureux), des paresthésies (sensation désagréable, non douloureuse).

e Meécanismes physiopathologiques

Les troubles sensitifs a la suite d’'un AVC peuvent tout d’abord s’expliquer par I'atteinte du
cortex sensitif et des voies sensitives correspondantes (voies spino-thalamiques pour le tact grossier,
la douleur et la température, voie lemniscale pour le tact fin et la sensibilité profonde consciente).
De plus, la non-utilisation induite par la paralysie engendre, de maniere directe, une non-utilisation
des afférences sensitives et potentiellement une altération des voies ascendantes (Gracies, 2005).
Parallelement, de maniere indirecte, I'altération des feedbacks afférents risque, a son tour, d’étre une
source de perturbation du mouvement par difficulté de calibration de la commande (Macefield et al.,
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1993). Il a ainsi été montré que I'atteinte de la proprioception engendre des difficultés de coordination
intersegmentaire (Sainburg et al., 1993).

1.3.2 Les troubles visuels

Apres un AVC, 8 a 20% des patients présentent un déficit du champ visuel, lié a I'atteinte
du cortex visuel ou des voies optiques (Barker and Mullooly, 1997), (Singh Gilhotra et al., 2002).
[’hémianopsie latérale homonyme (HLH) est une amputation d’'un hémichamp visuel (généralement
du c6té de la paralysie) empéchant la détection de stimuli du c6té atteint. Les mouvements oculaires
ont été décrits pour compenser ce déficit (Jones and Shinton, 2006). Cependant, 60% des patients
présentant une HLH n’adoptent pas un comportement compensatoire d’exploration visuelle (Zinl,
1995). Une désorganisation de I’'exploration spatiale affecte I'intégration des informations visuelles de
I’environnement.

1.4 Les troubles cognitifs

Des troubles des fonctions supérieures (ou fonctions cognitives) peuvent faire suite a un AVC et
notamment influencer la fonction locomotrice.

[.4.1 L’héminégligence

L'héminégligence se définit comme une absence de réaction et d’orientation aux stimuli présentés
controlatéralement a la lésion cérébrale, en I'absence de troubles moteurs ou sensoriels. Ce trouble
touche particulierement les personnes avec un AVC dans le territoire de I'artére cérébrale moyenne
droite qui négligent I'espace gauche (Bowen et al., 1999). La négligence peut étre corporelle concernant
le c6té hémiplégique, visuo-spatiale concernant 'hémiespace et/ou motrice correspondant a une
sous-utilisation de I’hémicorps atteint alors que les possibilités sont présentes. Les patients négligents
présentent un défaut d’exploration spatiale du cété atteint en spontané et/ou sur demande.

1.4.2 Les troubles attentionnels

Les troubles attentionnels touchent 24 a 51% des patients en phase chronique d’'un AVC (Hyndman
et al., 2008). Les troubles attentionnels peuvent concerner I'attention sélective (fixer une tache malgré
des distractions), I'attention soutenue (maintenir la concentration sur la durée) et/ou I'attention divisée
(gérer plusieurs taches en méme temps).

1.4.3 Les troubles des fonctions exécutives et du comportement

Des troubles des fonctions exécutives et du comportement peuvent étre observés a la suite
d’un AVC, lorsque celui-ci touche essentiellement les zones frontales ou les voies correspondantes.
Les fonctions exécutives regroupent I'anticipation, la planification, Iinitiation, I'organisation, I'inhibition,
la résolution de problemes et la correction d’erreurs. Elles sont mises en jeu pour les taches orientées
vers un but et pour les situations nouvelles (Chung et al., 2013). Des troubles du comportement tels que
I'apathie, la réduction d’initiative, de la flexibilité ou la désinhibition peuvent également étre présents.
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1.5 Association des symptémes induits par un AVC et répercussions fonctionnelles

[.5.1 Association des symptomes

De limportance des lésions post AVC, vont dépendre les déficits qui s’ensuivent avec,
généralement une association entre ces déficits. A la suite d’un AVC, il existe en effet une relation entre
les déficits moteurs et les déficits sensitifs (Kusoffsky et al., 1982). De méme, la spasticité est associée
a la sévérité des parésies et a I'hypoesthésie, avec davantage de spasticité en cas de parésie sévere
et en présence de troubles sensitifs superficiels (Sommerfeld et al., 2004), (Urban et al., 2010). Les
patients présentant des syncinésies du c6té non-parétique ont des troubles moteurs significativement
plus importants (Nelles et al., 1998) que les patients n’en présentant pas, suggérant une participation
plus importante du cortex non affecté lors de troubles moteurs importants. A I'inverse, une meilleure
récupération motrice est retrouvée chez les patients présentant des syncinésies coté parétique
comparativement a ceux n’en présentant pas (Hwang et al., 2005), (Nelles et al., 1998). Par ailleurs, il
existe une relation entre la sévérité de ’'AVC et I'indépendance fonctionnelle des patients a 'issue de la
phase de rééducation (évaluée par I'lndex de Barthel relatant I'indépendance dans les activités de vie
quotidiennes et les déplacements) (Jorgensen et al., 1995).

I.5.2 Répercussions fonctionnelles

Chaque symptdéme décrit précédemment a des répercussions sur les capacités fonctionnelles.
Ainsi, la parésie influence toutes les activités fonctionnelles de maniére générale (R. Bohannon, 2007).
Elle a, par exemple, été associée a I'indépendance dans les activités de vie quotidienne (évaluée par
I'index de Barthel) et la mobilité (évaluée par le Rivermead Mobility Index) (Tyson et al., 2007). Aussi, la
force des extenseurs de genoux a été montrée comme déterminante pour le passage assis debout (R.
W. Bohannon, 2007) et la montée et descente des escaliers chez les patients hémiparétiques (Flansbjer
et al., 2006).

La spasticité est reconnue comme perturbatrice de la mobilité active (Bobath B., 1990). Cependant,
bien que les patients non spastiques aient une meilleure motricité que les patients spastiques (Urban et
al., 2010), la corrélation entre le tonus musculaire et les scores fonctionnels est faible (Sommerfeld et
al., 2004). Ainsi les incapacités séveres peuvent aussi bien toucher les patients non spastiques que les
patients spastiques (Sommerfeld et al., 2004).

Le mouvement nécessitant une disponibilité des informations sensitives pour une action effective
dans l'espace, les déficits sensitifs impactent négativement les mouvements et I'exploration de
I’environnement. A ce titre, les patients n’ayant pas de déficiences sensitives (superficielles et profondes)
présentent une meilleure indépendance dans les activités de vie quotidienne (évaluées par I'lndex de
Barthel) et une meilleure mobilité (évaluée avec le Rivermead mobility index) que les patients avec déficits
(Kusoffsky et al., 1982), (Sommerfeld and von Arbin, 2004), (Stern et al., 1971). Aussi, apres lésion
focale du cortex moteur de singes, Nudo et al (2000) mettent en évidence de moindres performances
motrices de saisie et un besoin de contrdle visuel, en lien avec des déficits sensitifs, démontrant ainsi
que les afférences sensitives sont indispensables a la bonne exécution de mouvements (Nudo et al.,
2000). Les troubles visuo-spatiaux ont également été corrélés a I'indépendance des patients dans les
activités de vie quotidienne a l'issue de la prise en charge rééducative a la suite d’'un AVC (Kaplan and
Hier, 1982).
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Au final, Patel et al (2000) montrent que le cumul des déficiences motrices, sensitives et
visuelles induit davantage de dépendance fonctionnelle, évaluée avec I'lndex de Barthel ou la Mesure
d’Indépendance Fonctionnelle chez les patients hémiparétiques (Patel et al., 2000).

Les troubles cognitifs perturbent également I'indépendance dans les activités quotidiennes, la
mobilité et I’équilibre des patients hémiparétiques (Fong et al., 2001), (Stephens et al., 2005), (Pahlman
et al., 2011). Plusieurs études montrent une influence négative des troubles des fonctions exécutives
sur l'indépendance dans les activités de vie quotidienne et la mobilité (évaluées par le Functional
Independence Measure) (Fong et al., 2001) et sur la stabilité des patients a la suite d’un AVC (Pahiman et
al., 2011). Stephens et al (2005) soulignent davantage de difficultés dans les activités de vie quotidienne
pour les patients présentant des troubles attentionnels (Stephens et al., 2005).

1.6 Les conséquences musculo-squelettiques

Une diminution de la mobilité passive est une complication fréquente suite a 'AVC (60% des
patients a un an de leur AVC) (Sackley et al., 2008). Les troubles moteurs (parésie, spasticité), I'immobilité
et les modifications tissulaires consécutives sont a I'origine des hypoextensibilités musculo-tendineuses
et enraidissements articulaires chez les patients hémiparétiques. L'absence de mobilité est le premier
facteur incriminé. Ainsi, I'immobilisation d’un membre dans une position raccourcie induit une diminution
du nombre de sarcomeres (Williams and Goldspink, 1984), (Ryan et al., 2002) et une atrophie (perte de
masse musculaire par diminution du diameétre des fibres et du volume de section du muscle) (Ryan et al.,
2002). Limmobilisation est également a I'origine d’une diminution de I'extensibilité de la jonction myo-
tendineuse (Kannus et al., 1992) conduisant a des hypoextensibilités chez les patients hémiparétiques
(Kwah et al., 2012), (Gracies, 2005), (Barnes., 2008) et limitant la mobilité autour d’une articulation
(Gracies, 2005), (Barnes., 2008). De plus, 'immobilisation augmente les réponses des fuseaux, ce qui
majore le réflexe myotatique et contribue a augmenter la sensibilité a I'étirement du muscle hyperactif
(Gracies, 2005). Par ailleurs, I'immobilisation engendre une réduction des aires motrices et sensitives
corticales correspondantes aux segments de membres immobilisés ainsi qu’une réduction du faisceau
cortico-spinal, reflet des modifications des faisceaux afférents et efférents (Langer et al., 2012).

Un lien entre hypoextensibilités et spasticité est frequemment suggéré. Cependant, il semblerait
que la limitation a I’étirement musculaire soit plus liée a la composante résistance passive de I’hypertonie
gu’au réflexe d’étirement en tant que tel (O’'Dwyer et al., 1996), (Barnes., 2008). La résistance passive
est effectivement augmentée du coté spastique due a des modifications structurelles du complexe
muscle-tendon-articulation (Sinkjaer and Magnussen, 1994), (O’'Dwyer et al., 1996), (Singer et al.,
2003), (Dietz and Sinkjaer, 2007).

A distance de I'AVC, la contribution musculaire semble laisser place aux phénoménes
d’enraidissements articulaires (structures capsulo-ligamentaires) (Gracies, 2005). Ceux-ci s’expliquent
par une prolifération de tissu conjonctif dans I'espace articulaire et son adhésion au cartilage, des
adhérences de la membrane synoviale et un rétrécissement de la capsule (Akeson et al., 1987), (Trudel
and Uhthoff, 2000). Une désorganisation de I'alignement ligamentaire et une diminution de I'extensibilité
ligamentaire sont également mises en cause (Akeson et al., 1987), (Trudel and Uhthoff, 2000). Une
atrophie et des ulcérations du cartilage sont également mentionnées dans ces phénomeénes (Akeson et
al., 1987), (Trudel and Uhthoff, 2000).
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Ces changements tissulaires et articulaires peuvent restreindre I'expression motrice des muscles
antagonistes aux muscles spastiques, s’ajoutant ainsi aux restrictions imposées par la parésie (Pandyan
et al., 2005), (Barnes., 2008), (Hufschmidt and Mauritz, 1985), (Gray et al., 2012).

A terme, ces limitations d’extensibilité et raideurs articulaires peuvent aboutir a des déformations,
avec par exemple un équin irréductible de la cheville observé chez certains patients hémiparétiques
(Thilmann et al., 1991), (Sinkjaer and Magnussen, 1994).

Tableau 1: Récapitulatif de la symptomatologie a la suite d’'un AVC.

Lésion voie cortico-spinale,
Dégénérescence secondaire

Co-contractions, mécanismes peu connus (interconnexions segmentaires médullaires
pour les syncinésies de coordination, activation cortex non-lésé pour syncinésie
d'imitation suggérées)

Augmentation de I'excitabilité du motoneurone alpha,

Diminution de I'activité des interneurones inhibiteurs au niveau spinal (interneurones de
linhibition présynaptique la, de l'inhibition récurrente, de I'inhibition réciproque la)
Modification du contréle supra-spinal

Modification de 'excitabilité des fuseaux neuro-musculaires

Atteinte cortex sensitif et voies correspondantes

Non-utilisation des afférences sensitives et des voies ascendantes

Altteinte cortex visuel et voies correspondantes

Essentiellement lors d’'une atteinte dans le territoire de l'artére cérébrale moyenne droite

Essentiellement lors d'une atteinte des zones frontales ou des voies correspondantes

Hypoextensibilités myo-tendineuses

Immobilisation induite par la non-utilisation

Réduction des aires motrices et sensitives corticales correspondantes
Enraidissements articulaires (structures capsulo-ligamentaires)
Déformations possibles (€quin par exemple)

La symptomatologie de I’AVC engendre un certain nombre de complications et conséquences
fonctionnelles comme la difficulté pour les patients de réaliser les passages assis debout, les transferts
fauteuil, le maintien de la position debout. Néanmoins, ces notions ne seront pas développées, ce travail
ciblant essentiellement la fonction de navigation dans I'espace, elle-méme basée sur les fonctions de
marche et de I’équiilibre au cours de la marche.
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I La marche

Afin de comprendre les anomalies de marche des patients hémiparétiques, il est nécessaire de
présenter au préalable la marche du sujet non pathologique. La marche se définit comme un mode de
locomotion bipéde avec une activité alternée des membres inférieurs et un maintien de I’équilibre au
cours du mouvement (Plas et al., 1983). En ce sens, la marche nécessite de la stabilité pour fournir un
support antigravitaire, de la mobilité des segments et un contréle moteur pour les transferts du poids
du corps d’'un membre vers 'autre. D’'un autre point de vue, la marche peut étre présentée comme
le déplacement d’un individu d’un point a un autre. Lorsque cela implique la finalité du déplacement
et la prise en compte de I’'environnement, le terme de navigation est alors proposé pour I'étude de la
marche dans des situations de vie quotidienne comme la marche orientée vers un but, les trajectoires
non rectilignes, le contournement d’obstacles, les demi-tours (Berthoz and Viaud-Delmon, 1999), (Vallis
and McFadyen, 2003), (Gérin-Lajoie et al., 2005).

I1.1 Généralités sur la marche humaine

II.1.1 Le cycle de marche

La marche est décrite comme une fonction cyclique. Un cycle est déterminé par 'ensemble des
événements survenant entre deux événements successifs identiques, I'attaque du pas au sol définissant
communément le début et la fin d’un cycle. Les différentes phases constituant le cycle de marche sont
exprimées en pourcentage de celui-ci, normalisé par rapport a la durée du cycle sur 100%. Deux
principales phases composent le cycle de marche : la phase d’appui et la phase oscillante (lorsque le
pied n'est pas en contact avec le sol). La phase d’appui comprend elle-méme une premiere phase de
double appui (le double appuiinitial), une phase de simple appui et une seconde phase de double appui
(le double appui final). La distribution des phases lors de la marche normale est de 60% pour la phase
d’appui avec 10% pour chaque phase de double appui et 40% pour la phase de simple appui et, 40%
pour la phase oscillante (figure 2) (Perry, 1992).
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Figure 2: Le cycle de marche d’apres (Perry, 1992)

Plus précisément, la marche se divise en 8 phases selon Perry (1992) (Perry, 1992) a savoir:
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- Phase 1: Contact initial (0-2% du cycle de marche): contact du pied avec le sol ;

- Phase 2: Mise en charge (0-10% du cycle de marche): phase de double appui initial, les objectifs
sont I'amortissement, la stabilisation et la préservation de la progression ;

- Phase 3: Milieu d’appui (10-30% du cycle de marche): premiére moitié de la phase de simple
appui allant du décollement du sol du pied controlatéral jusqu’a ce que le centre de gravité atteigne
la verticale au-dessus du pied, les objectifs sont la progression et la stabilité du membre et du tronc ;

- Phase 4: Appui terminal (30-50% du cycle de marche): seconde moitié de la phase de simple
appui se terminant lorsque le membre controlatéral touche le sol, I'objectif est la progression du corps
au-dela du membre portant ;

- Phase 5: Pré-phase oscillante (50-60% du cycle de marche): phase de double appui final au
cours de laquelle s’effectue le transfert de poids d’un membre inférieur a 'autre. La phase se termine
par le décollement des orteils. Les objectifs sont la propulsion vers I'avant et le positionnement du
membre pour la phase oscillante ;

- Phase 6: Début de phase oscillante (60-73% du cycle de marche): cette phase débute lorsque
le pied quitte le sol et se termine lorsque le pied est aligné avec le pied controlatéral. Les objectifs sont
la clairance du pied par rapport au sol et 'avancement du membre ;

- Phase 7: Milieu de phase oscillante (73-87% du cycle de marche): cette phase se termine
lorsque le membre oscillant est en avant et le tibia est vertical, les objectifs sont la clairance du pied par
rapport au sol et 'avancement du membre ;

- Phase 8: Fin de phase oscillante (87-100% du cycle de marche): cette phase se termine lorsque
le pied entre en contact avec le sol. L'avancement du membre est complet lorsque le segment jambe se
situe en avant du segment cuisse. Les objectifs sont I'avancement complet du membre et la préparation
a l'appui.

[1.1.2 Les parametres cinématiques de marche

La cinématique correspond a la description du mouvement et plus précisément au déplacement
des segments (et non aux forces internes et externes qui expriment la cause du mouvement). La
cinématique comprend les parametres spatio-temporels et la cinématique articulaire.

Les paramétres spatio-temporels comprennent :

- La vitesse de marche est définie comme le temps nécessaire pour couvrir une distance donnée.
C’est la variable la plus utilisée pour représenter la performance de marche (Olney et al., 1994). La valeur
moyenne pour les sujets sains est comprise entre 1.3 et 1.46 m/s selon I’age et le genre (Bohannon,
1997). La vitesse de marche est le produit de la longueur de pas avec la cadence.

- La cadence de marche est définie comme le nombre de pas par minute. La valeur moyenne
pour les sujets sains est de 117 pas/min pour les femmes et 111 pas/min pour les hommes (Perry,
1992).

- La longueur de pas est définie comme la distance, dans le plan de I'avancement, entre les deux
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pieds posés au sol. La valeur moyenne pour les sujets sains est comprise entre 0.6 et 0.8m (Viel, 2000).

- La longueur de I'enjambée est définie comme la distance, dans le plan de I'avancement, entre

deux poses successives du méme pied. La valeur moyenne pour les sujets sains est de 1.41m (Perry,
1992).

- La largeur de pas est définie comme la distance, dans le plan frontal de I'avancement, entre les

deux pieds posés au sol. La valeur moyenne pour les sujets sains est comprise entre 8 et 12cm (Viel,
2000).

- Le pourcentage de phase d’appui est défini comme le pourcentage de phase correspondant a
la période de toute la phase d’appui. La valeur moyenne pour les sujets sains est de 60% (Perry, 1992).

- Le pourcentage de phase oscillante est défini comme le pourcentage de phase correspondant a
la période entre le décollement des orteils et la pose du pied au sol. La valeur moyenne pour les sujets
sains est de 40% (Perry, 1992).

- Le pourcentage de phase de simple appui est défini comme le pourcentage de phase
correspondant a la période de la phase de simple appui du membre correspondant. La valeur moyenne
pour les sujets sains est de 40% (Perry, 1992).

Les parameétres de la cinématique articulaire les plus fréquemment analysés sont les amplitudes
articulaires dans le plan sagittal, a savoir les pics de flexion et d’extension des hanches, genoux et
chevilles (de chaque membre inférieur). La figure 3 présente les valeurs normatives de la cinématique
articulaire au cours du cycle de marche de sujets sains.

Figure 3: Cinématique articulaire dans le plan sagittal de sujets sains au cours d’un cycle de marche: (a)
(a)

50

40 —

30

Hip Joint Motion {")
Knee Joint Motion ("} =

-10
100 0 20 40 60 80 100

Gait Cycle (%)

Gait Cycle (%)

9 20 40 60 80 100
Gait Cycle (%)

hanche, (b) genou et (c) cheville. Les courbes présentent les moyennes et +1 écart-type de la moyenne (Winter,
1987).
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Le minimum foot clearance (MFC) est le résultat du raccourcissement du membre inférieur. Ce
parametre se définit comme la distance verticale minimale entre le point le plus bas du pied oscillant et
la surface au sol pendant la phase oscillante du cycle de marche (figure 4) (Winter, 1991).
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Figure 4: Minimum Foot Clearance (MFC) lors de la marche. Déplacement vertical du marqueur orteil au cours
d’un cycle de marche montrant que le MFC a lieu au milieu de la phase oscillante (Begg et al., 2005).

II.2 La marche chez les patients hémiparétiques

Ala suite d’'un AVC, les patients présentent leurs difficultés de marche comme une préoccupation
primaire (Bohannon et al., 1988). De plus, les profils d’activités reportés dans la littérature pour des
patients hémiparétiques sont restreints et trés variables: entre 1.4 et 7.4 pas par jour (English et al., 2014)
pour des patients plutbt sédentaires a 2800 pas par jour pour d’autres plus actifs, comparativement
aux sujets sains sédentaires de méme age (5000 a 6000 pas par jour) (Michael et al., 2005). Ce faible
niveau d’activité est lié aux déficiences faisant suite aI’AVC (parésie, hypertonie, troubles orthopédiques,
troubles sensoriels..) perturbant le schéma de marche, la vitesse et les capacités d’équilibre des patients
(Michael et al., 2005). Il existe bien un cercle vicieux liant les déficiences a la diminution de performance
et aux limitations d’activités.

[1.2.1 Les parametres cinématiques de marche des patients hémiparétiques

Bien que 65% a 85% des patients sont capables de marcher seul a la suite d’'un AVC (Wade
et al., 1987), (Jergensen et al., 1995), des anomalies de la marche persistent. La marche de patients
hémiparétiques est ainsi caractérisée par une modification des parameétres spatio-temporels et une
diminution de la cinématique articulaire. On note en effet une diminution de la cadence du pas, de la
longueur du pas et de la vitesse de marche (Brandstater et al., 1983), (Bohannon, 1987), (Pinzur et al.,
1987), (Olney et al., 1994), (von Schroeder et al., 1995), une augmentation de la largeur de pas (Chen
et al., 2005) et du temps de double appui, une diminution de la durée de la phase oscillante du coté
atteint et une augmentation de la durée du cycle de marche (Bohannon, 1987), (Pinzur et al., 1987),
(von Schroeder et al., 1995), (Viel, 2000), (Goldie et al., 2001).
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Il existe également des déviations de la cinématique articulaire:

- Lors de la phase oscillante, il existe ainsi une diminution du pic de flexion de hanche (Olney and
Richards, 1996), (De Quervain et al., 1996), (Chen et al., 2005) et de flexion de genou (Lehmann et al.,
1987), (De Quervain et al., 1996), (Olney and Richards, 1996), (Kerrigan et al., 1991), (Chen et al., 2005)
et un déficit de dorsiflexion de cheville (Lehmann et al., 1987), (De Quervain et al., 1996), (Olney and
Richards, 1996), (Chen et al., 2005). Le MFC apparait pourtant augmenté du cété parétique par rapport
a la norme (Little et al., 2014), probablement pour permettre une marche sécurisée. Une élévation
du bassin et une circumduction du membre inférieur sont observées pour atteindre une clearance
suffisante (Kerrigan et al., 2000), (Cruz and Dhaher, 2009). Dans le plan frontal, une abduction de
hanche (Lehmann et al., 1987), (Olney and Richards, 1996) ou un varus de pied (Perry, 1992) peuvent
également étre observés.

- Lors de la phase d’appui, on note un déficit d’extension de hanche en fin de phase d’appui (De
Quervain et al., 1996), (Chen et al., 2005), au niveau du genou, un possible recurvatum (Perry, 1992),
(Olney and Richards, 1996) ou une flexion excessive (Olney and Richards, 1996) et, au niveau de la
cheville, un déficit de flexion dorsale (Olney and Richards, 1996) puis un déficit de flexion plantaire en
pré-phase oscillante (Viel, 2000).

I1.2.2 Conséquences des symptomes de I’AVC sur la marche

Les déficits de la commande motrice faisant suite a un AVC sont reconnus comme génants
pour la marche. Ainsi, la force des extenseurs de genou cdté parétique conditionne I'indépendance
a la marche (Bohannon and Andrews, 1995), (Gerrits et al., 2009). De méme de nombreuses études
montrent que la force des extenseurs et fléchisseurs de hanche, des extenseurs et fléchisseurs de
genou et des fléchisseurs dorsaux et plantaires de cheville du cété parétique est corrélée a la vitesse
et/ou a la cadence de marche des patients hémiparétiques (Bohannon, 1986), (Bohannon and Walsh,
1992), (Bohannon and Andrews, 1995), (Davies et al., 1996), (Nadeau et al., 1999b), (Nadeau et al.,
1999a), (Kim and Eng, 2003), (Hsu et al., 2003), (Lin, 2005). Hsu et al (2003) montrent que, chez les
patients hémiparétiques ayant subi un AVC, la force des fléchisseurs de hanche est le parametre
qui détermine le plus la vitesse spontanée de marche et que la force des extenseurs de genou est
le paramétre le plus impliqué dans la vitesse rapide de marche (Hsu et al., 2003). Les troubles de la
motricité volontaire peuvent donc s’avérer génants pour la marche. A l'inverse, les syncinésies peuvent
étre utiles, comme les syncinésies de coordination en flexion du membre inférieur pour faciliter le MFC
du pied et ainsi probablement limiter le risque d’accrochage du pied au sol et donc le risque de chute
(Roche et al., 2015).

Concernant la spasticité, elle peut, dans quelques cas, s’avérer aidante pour compenser une
parésie importante comme I’hypertonie des extenseurs de genou contribuant a la phase d’appui de
la marche (Berger et al., 1984). Néanmoins, il est frequemment suggéré qu’elle perturbe la marche,
mais de nombreuses études montrent qu’elle n’est que peu liée aux performances de marche que
sont la vitesse, la cadence et I'indépendance (Nakamura et al., 1985), (Bohannon and Andrews, 1995),
(Nadeau et al., 1999a), (Hsu et al., 2003), (Lin et al., 2006).

Au final, de récentes études suggérent que la force est I’élément déterminant pour la vitesse de
marche des patients hémiparétiques (Dietz and Sinkjaer, 2007), alors que la spasticité des fléchisseurs
plantaires est déterminante pour I'asymétrie temporale (phase de simple appui) (Hsu et al., 2003) et
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spatiale de la marche (longueur de pas) (Hsu et al., 2003), (Lin et al., 2006). Par ailleurs, la combinaison
de I'nyperexcitabilité réflexe avec la parésie semble associée a la diminution de vitesse de marche
(Singer et al., 2003).

Les déficits de sensibilité faisant suite a un AVC sont également évoqués comme génants pour
la marche, avec notamment une moindre indépendance a la marche (Keenan et al., 1984). Certains
auteurs, en revanche, ne trouvent pas de relation entre les déficits de sensibilité et les performances
de marche des patients que sont la vitesse et la cadence (Brandstater et al., 1983), (Dettmann et al.,
1987). Nadeau et al (1999) montrent que la sensibilité n’est effectivement pas déterminante pour la
vitesse confortable de marche mais I'est pour la vitesse rapide (Nadeau et al., 1999a). Hsu et al (2003)
trouvent une corrélation entre les déficits sensitifs (superficiels et profonds) et la vitesse de marche
bien que la contribution des déficits sensitifs soit moindre que les déficits moteurs. Lin et al (2006) ont
spécifiquement étudié les parametres spatio-temporels de la marche et montrent que la proprioception
de cheville est corrélée a la vitesse de marche, la cadence, la longueur et la largeur de pas et I'asymétrie
temporelle et fait partie des déterminants de la vitesse et de I'asymétrie temporelle de marche (Lin et
al., 2006). Les patients présentant un déficit proprioceptif marchent plus lentement avec de petits pas.
Une compensation visuelle lors de la marche (en regardant le sol et les pieds) peut alors expliquer les
résultats de marche plus lente en cas de déficiences sensitives (Hsu et al., 2003).

Les troubles visuels et d’exploration faisant suite a un AVC vont également géner le patient lors de
ses déplacements. Ainsi, les patients présentant une HLH a la suite d’'un AVC ont une probabilité plus
faible de marcher sans assistance par rapport aux patients sans HLH (Reding and Potes, 1988). Il a
aussi été montré que les patients présentant des erreurs au test de bissection de droite ont une moins
bonne indépendance dans les activités de vie quotidiennes (index de Barthel) et une vitesse de marche
plus lente que les patients réalisant le test sans erreur (Friedman, 1990).

Les troubles des fonctions cognitives des patients ayant subi un AVC ont également un impact
sur leur marche. Les patients présentant une négligence unilatérale spatiale ont par exemple une vitesse
de marche moins élevée que les patients sans négligence (Friedman, 1990). Les troubles des fonctions
exécutives ont également un impact négatif sur la vitesse de marche et le risque de chute des patients
ayant subi un AVC (Yogev-Seligmann et al., 2008), (Rapport et al., 1993), (Liu-Ambrose et al., 2007). Par
ailleurs, 'augmentation de la complexité d’une tache locomotrice va induire davantage de sollicitations
cognitives et donc une dégradation de la marche en cas de déficits des fonctions supérieures (Yogev-
Seligmann et al., 2008).

Le besoin de concentration lors d’activités de marche et la distractibilité sont rapportés par les
patients ayant subi un AVC lorsqu’ils décrivent le contexte de leurs chutes (Stapleton et al., 2001),
(Hyndman et al., 2002). Plusieurs auteurs se sont de ce fait intéressés a l'influence de I'ajout d’une
seconde tache au cours d’une tache de marche chez des patients hémiparétiques ayant subi un AVC
(Bowen et al., 2001), (Yang et al., 2007), (Baetens et al., 2013). Le paradigme de double tache permet
ainsi (i) d’évaluer le co(t en ressources attentionnelles pour contrdler une tache locomotrice et (i) de
quantifier I'automaticité d’une tache (Canning et al., 2006). Il a notamment été montré que la condition
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double tache (réaliser deux taches simultanément) affecte les paramétres spatio-temporels de marche
des patients hémiparétiques qui réduisent leur vitesse de marche, leur cadence et longueur de pas
et augmentent leur phase de double appui lorsqu’ils doivent effectuer une tache cognitive au cours
de la marche (Plummer-D’Amato et al., 2008), (Plummer-D’Amato et al., 2010), (Bowen et al., 2001),
(Baetens et al., 2013).

Les conséquences musculo-squelettiques peuvent perturber la marche. Par exemple, au cours
de la marche, I'équin diminue I'absorption en flexion de genou lors de la mise en charge, peut induire
une hyperextension de genou a la phase d’appui et un accrochage du pied lors de la phase oscillante
(Perry, 1992). Ces perturbations s’accompagnent d’une diminution de la vitesse de marche de patients
hémiparétiques (Perry, 1992), (Roy et al., 2013). Néanmoins, il semblerait que ces génes soient a
relativiser selon I'importance des déficiences orthopédiques. Ainsi, Lamontagne et al (2000) et Lin et al
(2006) ne trouvent pas de corrélation entre la raideur passive de cheville en flexion dorsale et la vitesse
de marche, la cadence, la longueur de pas des patients hémiparétiques (Lamontagne et al., 2000), (Lin
et al., 2006). Cependant les déficits de flexion dorsale présentés par les patients inclus dans ces études
ne semblaient pas suffisamment importants pour limiter la vitesse de marche. A l'inverse, certains
auteurs suggerent que la raideur pourrait parfois s’avérer bénéfique comme par exemple I’'augmentation
du moment en flexion plantaire de cheville lors de la phase d’appui de la marche permis par la raideur
passive de cheville, pour compenser le manque de moment actif (Lamontagne et al., 2000).

I1.2.3 Les principaux schémas de marche décrits chez les patients hémiparétiques
Lalittérature décrit des schémas de marche frequemment rencontrés chez le patienthémiparétique :

- Le fauchage est un mouvement de circumduction pour compenser un déficit de raccourcissement
du membre inférieur parétique, par manque de flexion de hanche et/ou de genou et de flexion dorsale
de cheville lors de phase oscillante (Kerrigan et al., 2000), (Kim and Eng, 2004), (Chen et al., 2005).

- Le stiff knee gait est caractérisé par un déficit de flexion de genou lors de phase oscillante du cycle
de marche (Kerrigan et al., 1991). Les causes identifiées du stiff knee gait sont une hyperactivité d’un
ou plusieurs chefs du quadriceps (fréquemment le rectus femoris), une flexion de hanche insuffisante et
un défaut de propulsion en fin de phase d’appui (Campanini et al., 2013).

- Le recurvatum, ou hyperextension de genou, survenant lors de la phase d’appui (Olney and
Richards, 1996), (Kim and Eng, 2004). Un déficit de force des extenseurs et des fléchisseurs de
genou, une hyperactivité des extenseurs de genou, une hyperactivité et/ou une hypoextensibilité des
fléchisseurs plantaires peuvent étre incriminés dans ce trouble de marche (Moseley et al., 1993).

- Léquin se définit comme une position de flexion plantaire de cheville avec I'avant-pied plus
bas que le talon (Perry, 1992). Une flexion plantaire excessive en phase oscillante majore le risque
d’accrochage du pied au sol et un équin en phase d’appui peut induire un appui sur la pointe du pied ou
un recul du tibia (induisant un possible recurvatum) (Perry, 1992). Les causes évoquées pour une flexion
plantaire excessive sont un déficit de force des fléchisseurs dorsaux de cheville, une hyperactivité des
fléchisseurs plantaires et les changements histologiques associés a I'immobilisation pouvant induire
une hypoextensibilité du triceps sural (Perry, 1992).
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Il La stabilité lors de la marche

lll.1 La stabilité lors de la marche chez les sujets sains

Afin de comprendre les difficultés de stabilisation des patients hémiparétiques au cours de la
marche, il est également nécessaire de présenter au préalable la stabilisation du sujet non pathologique
au cours de cette derniere. La stabilité a la marche peut étre considérée comme la capacité a maintenir
une locomoation fonctionnelle et contrdler le centre de masse malgré les perturbations (Winter, 1990),
(Viel, 2000), (England and Granata, 2007). Ce contrle est permis par des réactions antigravitaires et
des réactions d’équilibration (réactions compensatrices des forces extérieures ou des mouvements
intentionnels) (Winter et al., 1998). Cette régulation passe par des changements géométriques opérés
grace aux informations issues des afférences cutanées plantaires, proprioceptives (des membres, du
tronc et du cou pour permettre une organisation par rapport a la verticale), vestibulaires et visuelles.
Une intégration multisensorielle autorise la comparaison a une référence. On parle de controéle rétroactif
(en feedback) permis par un systeme auto-adaptatif sensori-moteur. Par ailleurs, le contrbéle de
I’équilibre n’est pas simplement di a une chaine de réponses a des stimuli. Il implique également la
comparaison de I'état des récepteurs avec une prédiction (Berthoz, 1997). Cette prédiction consiste en
une anticipation des conséquences de I'action, basée sur nos apprentissages passés. On parle alors
de contrdle proactif (feedforward) permis par des ajustements posturaux anticipés. L'équilibre est ainsi
assuré par un controéle rétroactif et proactif.

Lamarche doit ainsirépondre aux exigences de propulser le corps vers I'avant et de, conjointement,
maintenir I'équilibre pour une adaptation aux contraintes environnementales (Outrequin G., 1991). La
stabilité est considérée comme une stratégie globale impliquant une réponse du corps entier a la suite
de perturbations de I'’équilibre (Berthoz, 1997), (Marigold and Misiaszek, 2009). Le centre de masse
(COM), point équivalent a la masse totale corporelle pondéré des masses de chaque segment corporel,
est donc envisagé comme la variable contrélée par le systeme pour maintenir I’équilibre (Winter and
Eng, 1995). La stabilité pendant la marche n’est pas simple, nécessitant, pour contréler le COM a une
distance importante du sol, un équilibre basé sur de petites surfaces en contact avec le sol (en phase
de simple appui et en double appui, avec uniqguement le talon du pied avant et I'avant-pied du pied
arriere) et une pose du membre oscillant en position optimale (Winter and Eng, 1995). La translation du
COM au cours de la marche décrit une sinusoide dans le plan vertical et horizontal. Ces déplacements
du COM dans I'espace au cours de la marche sont gérés de fagon a étre aussi limités que possible
pour obtenir une marche optimale et dépenser un minimum d’énergie (Saunders et al., 1953), (Perry,
1992). Les changements brusques de direction sont ainsi évités dans cet esprit d’économie d’énergie
(Perry, 1992).

Divers parametres ont été suggérés pour quantifier la stabilité au cours de la marche. Les mesures
directes des déplacements du COM sont considérées comme des indicateurs de défaut de stabilité
en cas de déplacements en dehors des amplitudes et vitesses habituelles. 'amplitude et la vitesse du
COM dans le plan médio-latéral sont augmentées chez les sujets &gés lors d’'une marche avec une
base étroite (Kelly et al., 2008) et chez les sujets agés présentant des troubles de I’'équilibre lors d’une
tache instable d’enjambement d’obstacles (Chou et al., 2003), (Hahn and Chou, 2003) traduisant une
moindre stabilité. Cette méme tache d’enjambement n’entraine pas de telles modifications chez les
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sujets jeunes, traduisant une maitrise de I’équilibre (Chou et al., 2001). Les déplacements du COM dans
le plan vertical peuvent également traduire une difficulté a maintenir I'équilibre, avec une augmentation
de I'amplitude retrouvée chez les patients vestibulaires lorsgu’on leur impose un rythme de marche, par
rapport a une marche a vitesse spontanée (Tucker et al., 1998).

Une condition fréquemment évoquée pour un maintien de I’équilibre est la projection du COM
dans le polygone de sustentation. En condition de marche, la base de sustentation étant mobile, Pai et
Patton recommandent de prendre en considération la vitesse pour identifier les risques de chute (Pai
and Patton, 1997). Ainsi, le COM peut étre dans le polygone mais I'équilibre impossible si la vitesse est
dirigée vers I'extérieur et inversement, le COM peut étre hors du polygone mais I’équilibre possible si
la vitesse est dirigée vers I'intérieur. L'homme est alors considéré comme un pendule inverse, modélisé
par une masse m se balancant au-dessus d’un segment de longueur |. En se basant sur la théorie de
Pai et Patton, Hof et al (2005) proposent une mesure de la marge de stabilité, définie comme la distance
entre le COM extrapolé et les limites de la base de sustentation, le COM extrapolé prenant en compte la
position et la vitesse du COM (Hof et al., 2005). La limite de cette approche est la considération du corps
humain comme un pendule inversé. Ceci nous orientera vers le choix des parametres de déplacements
du COM (amplitude et vitesse) et des parametres spatio-temporels de la marche, la littérature étant
riche dans I'exploration de ces parameétres, pour traduire la stabilité lors de la marche. Le suivi des
mouvements du COM au cours de la marche est d’ailleurs recommandé en pratique clinique pour les
patients présentant des troubles de marche (Detrembleur et al., 2000).

Les parametres spatio-temporels de la marche constituent une mesure indirecte de la stabilité.
La largeur de pas est souvent nommée comme un critéere de stabilité au cours de la marche, avec
une augmentation de celle-ci pour compenser des difficultés de stabilité (Gabell and Nayak, 1984),
(Heitmann et al., 1989), (Hak et al., 2012), (Hak et al., 2013a). En plus d’augmenter leur largeur de pas
lorsqu’une perturbation de I'équilibre est ajoutée a une tache de marche, les sujets sains et personnes
agées diminuent leur vitesse et leur longueur de pas pour assurer une bonne stabilité (Hak et al., 2012),
(Hak et al., 2013a), (Aboutorabi et al., 2015), (Woollacott and Tang, 1997). Lors d’'une marche sur des
obstacles déstabilisants, une augmentation de la longueur de pas peut également étre retrouvée, pour
minimiser les contacts au sol, source de perturbation de la stabilité (Menz et al., 2003). Le pourcentage
de double appui lors de la marche, parametre temporel, est également suggéré comme lié a I’équilibre
avec une augmentation des phases de double appui pour assurer la stabilité en péril (Cromwell and
Newton, 2004), (Tucker et al., 1998).

La stabilité pendant la marche comprend également la phase oscillante avec une hauteur du pas
suffisante pour éviter tout accrochage du pied et trébuchement (Weerdesteyn et al., 2008). Le Minimum
Foot clearance (MFC) est ainsi identifié comme un moyen de contrdler la stabilité au cours de la marche
(Hamacher et al., 2011) et apparait comme le premier mode de correction pour assurer la stabilité lors
de nos déplacements. Il permet d’évaluer le risque de trébuchement et donc de chute (Barrett et al.,
2010).

Les perturbations de la stabilité ne viennent pas nécessairement de I'extérieur, mais peuvent étre
induites par un mouvement complexe exécuté par le sujet lui-méme. Un déplacement nécessitant le
contournement d’obstacles implique une orientation particuliere de la marche en plus des besoins de
progression et de maintien de I'équilibre. Faire face aux contraintes agissant comme perturbateurs de
la stabilité apparait alors plus complexe lors de déplacements variés impliquant des changements de
direction, des contournements d’obstacles par exemple que lors d’une marche lancée en ligne droite.
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La diminution de stabilité (traduite par des chancellements) lors d’un demi-tour en marchant est ainsi une
caractéristiqgue des mouvements des personnes agées chuteuses et des personnes agées présentant
des difficultés a effectuer cette tache (Thigpen et al., 2000). Les personnes chuteuses adaptent donc
leur mouvement en augmentant le nombre de pas et le temps pour réaliser un demi-tour afin d’améliorer
leur stabilité (Wall et al., 2000), (Dite and Temple, 2002).

lll.2 La stabilité lors de la marche chez les patients hémiparétiques

[1.2.1 Les symptomes influencant la stabilité lors de la marche

Suite a un AVC, la stabilité a la marche peut étre compromise du fait des troubles de motricité, de
sensibilité et des limitations orthopédiques (Kligyte et al., 2003), (Niam et al., 1999), (Tyson et al., 2006),
(Weerdesteyn et al., 2008). Les déficits de la commande motrice faisant suite a un AVC influencent
en effet les capacités d’équilibre dynamique des patients hémiparétiques. Tyson et al (2006) trouvent
effectivement une relation positive entre les déficits de force (Motricity index) et les troubles de I’équilibre
mis en évidence par le Brunel Balance Assessment (comprenant des épreuves statiques et dynamiques
dont la marche) (Tyson et al., 2006). De méme, Kligyte et al (2003) trouvent des corrélations entre
la parésie des fléchisseurs de hanche, extenseurs de genou et fléchisseurs plantaires de cheville et
le Timed Up and Go, test impliquant, entre autres, un besoin de stabilité lors de taches de marche
orientée vers une cible et de demi-tours (Kligyte et al., 2003). Au-dela du déficit de force, le retard de
contraction musculaire observé a la suite d’'un AVC semble avoir un impact sur le contrdle de I'équilibre
et le risque de chute (Di Fabio and Badke, 1988), (Marigold et al., 2004a), (Marigold and Eng, 2006).
Ceci a été illustré par Marigold et al (2004, 2006), mettant en évidence un allongement du délai de
réaction posturale c6té parétique plus important chez les patients chuteurs que chez les non-chuteurs
(Marigold et al., 2004a), (Marigold and Eng, 2006). Par ailleurs, il a été suggére que la combinaison d’une
spasticité des fléchisseurs plantaires de cheville et d’un déficit de flexion dorsale en phase oscillante de
marche diminue la surface d’appui au sol et réduit la stabilité au cours de la marche (Weerdesteyn et
al., 2008).

Les déficiences sensitives peuvent également influencer les capacités d’équilibre des patients
hémiparétiques. Ainsi, les déficits de sensibilité du membre inférieur parétique (superficielle et
proprioceptive) apparaissent associés aux déficits d’équilibre dynamiques des patients hémiparétiques
(Niam et al., 1999), (Tyson et al., 2013). Niam et al (1999) montrent par exemple, que les déficits de
proprioception de cheville sont associés a des scores inférieurs a la Berg Balance Scale (comprenant
des épreuves dynamiques dont I'exécution d’'un demi-tour, la pose alternative des pieds sur une
marche) (Niam et al., 1999). Tyson et al (2013) présentent également I'existence d’une corrélation entre
les déficits sensitifs superficiel et profond et les troubles de I’équiilibre évalués par la Berg Balance Scale
et le Brunel Balance Assessment (Tyson et al., 2013). Pour autant, 'influence des déficits sensitifs sur
les capacités d’équilibration semble moindre que celle de la faiblesse musculaire (Tyson et al., 2013).
Toutefois, lorsque des déficits sensitifs s’ajoutent aux troubles moteurs, le risque de chute des patients
hémiparétiques devient alors trois fois plus élevé (Yates et al., 2002).

Les déficiences visuelles peuvent aussi étre associées a un défaut de stabilité lors de la marche des
patients hémiparétiques. Ainsi les troubles visuels et d’exploration peuvent induire des trébuchements
voire potentiellement des chutes chez les patients hémiparétiques (Pollock et al., 2011), (Jongbloed,

1986), sachant que la perte d’un champ visuel est associée au risque de chute (Ramrattan et al., 2001).
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Les troubles des fonctions cognitives influencent également la stabilité des patients hémiparétiques
lors de la marche. Il existe, en effet, des corrélations entre les déficits attentionnels et, les capacités
d’équilibre, les activités de mobilité en intérieur et extérieur et le nombre de chutes des patients
hémiparétiques a la suite d’'un AVC (Hyndman and Ashburn, 2003), (Hyndman et al., 2008).

Les troubles musculo-squelettiques peuvent aussi affecter la stabilité au cours de la marche des
patients hémiparétiques. Un équin peut, par exemple, induire un appui sur la pointe du pied avec donc
une moindre surface portante et un risque d’accrochage du pied au sol en phase oscillante (Perry,
1992).

[11.2.2 Interactions entre stabilité et marche

Il existe une association entre les capacités d’équilibre et les performances de marche. Il a ainsi
été montré que les capacités d’équilibre (évaluées par le Brunel Balance Assessment) font figure de
premier prédicteur des capacités de mobilité (évaluées par le Rivermead mobility index, regroupant
essentiellement des taches de marche) des patients hémiparétiques devant les déficits de force et de
sensibilité (Tyson et al., 2007). De plus, les capacités d’équilibre (évaluées par la BBS comprenant des
épreuves dynamiques dont I'exécution d’un demi-tour, la pose alternative des pieds sur une marche)
sont corrélées a la vitesse de marche et a la distance de marche lors du test des 6 minutes (parcourir le
plus de distance possible en 6 minutes) (Eng et al., 2002), (Patterson et al., 2007) et au nombre de pas
réalisés dans la journée par les patients hémiparétiques (Michael et al., 2005).

Les études précitées renseignent des capacités d’équilibre des patients au moyen d’échelles
et de tests comprenant des taches dynamiques comme la Berg Balance Scale (BBS) ou le test
Timed Up and Go (TUG). Le score a une échelle comme la BBS qualifie la réalisation de la tache or,
bien que des liens aient été montrés entre un score a la BBS et les capacités de marche, ce type
d’évaluation n’implique pas directement I’évaluation de la stabilité au cours de la marche. D’autre part,
le TUG implique bien une évaluation de déplacements locomoteurs nécessitant de la stabilité, mais la
performance chronométrique obtenue a I'issue du test peut paraitre insuffisante quant aux informations
relatives a la stabilité du patient au cours de la marche.

Certains auteurs se sont par conséquent intéressés a I'évaluation spécifique de la stabilité au
cours de la marche chez les patients hémiparétiques. Nous avons vu précédemment qu’un défaut de
stabilité a la marche pouvait se traduire par une augmentation des déplacements du COM avec une
majoration de I'amplitude et de la vitesse de déplacement de celui-ci. Chez les patients hémiparétiques,
il existe, au cours de la marche, une augmentation des déplacements du bassin dans le plan frontal,
en lien avec un défaut de stabilité latérale, par rapport aux sujets sains (Tyson, 1999), (De Bujanda et
al., 2004). Clark et al (2012) ont évalué I'amplitude du déplacement médio-latéral du COM lors d’une
tache de marche dans différentes conditions (avec ou sans assistance) chez des patients cérébro-
lésés et des sujets sains (Clark et al., 2012). Comparativement aux sujets sains, les sujets cérébro-
lésés avaient un déplacement plus important, qui pouvait étre réduit lorsqu’un support était autorisé
(suspension du poids du corps, appui des membres supérieurs, assistance du thérapeute). Ces
mémes résultats mettant en évidence davantage de déplacements médio-latéraux du COM chez les
patients cérébro-lésés par rapport aux sujets sains ont également été retrouvés par d’autres auteurs
(Catena et al., 2007). Dans le plan vertical, des déplacements du COM de plus grande amplitude que
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ceux observés lors de la marche de sujets sains ont également été mis en évidence chez les patients
hémiparétiques (Detrembleur et al., 2003). Certains auteurs se sont intéressés aux déplacements du
COM dans un contexte de situations complexes comme la marche en double tache ou I'exécution de
taches locomotrices complexes. Ainsi, une amplitude et une vitesse plus importantes du COM dans
le plan médio-latéral ont été retrouvées chez les patients cérébro-lésés lors de I'adjonction d’une
tdche cognitive a une tache locomotrice par rapport a une simple tache de marche (Catena et al.,
2007), (Howell et al., 2014). Un autre type de situation complexe, I'enjambement d’obstacles, engendre
également une augmentation des déplacements latéraux du COM chez les patients traumatisés craniens
par rapport a des sujets sains (Chou et al., 2004). Ces déplacements étaient d’autant plus importants
que la tache était instable (obstacles plus hauts).

Les parameétres spatio-temporels de la marche font également figure d’indicateurs de la stabilité
des patients hémiparétiques au cours de la marche. Patterson et al (2008) suggérent qu’une asymétrie
temporelle aux dépens du membre parétique peut s’expliquer par la difficulté a maintenir I’équilibre
en phase de simple appui du cboté parétique (Patterson et al.,, 2008). De la méme maniere, une
augmentation de la largeur de pas des patients hémiparétiques au cours de la marche est proposée
comme un mécanisme de compensations de défaut d’équilibre (Chen et al., 2005), (De Bujanda et
al., 2004), (Kao et al., 2014). Ces modifications biomécaniques peuvent aussi bien apparaitre comme
des conséquences de I'AVC sans causalité induite par un manque de stabilité. Hak et al (2013) se
sont récemment intéressés a I'impact d’une perturbation de I’équilibre pendant une tache de marche
sur tapis roulant chez des patients hémiparétiques comparativement a des sujets sains (Hak et al.,
2013b). En condition de perturbation, la réduction de la longueur de pas était plus importante pour les
patients que les sujets sains, I'augmentation de la largeur de pas n’était pas différente entre les deux
populations et seuls les patients diminuaient leur vitesse de marche. Ces résultats mettent en évidence
une possible adaptation des parametres spatio-temporels de marche chez les patients hémiparétiques,
en réponse a des perturbations de I'équilibre, afin d’assurer une stabilité optimale. Le sens de ces
adaptations peut alors étre le méme que chez les sujets sains, dans des amplitudes différentes. Par
ailleurs, plusieurs études montrent que I'adjonction d’une tache cognitive lors de la marche requiert
une adaptation des parametres spatio-temporels de la part des patients hémiparétiques pour maintenir
une stabilité efficace (Bowen et al., 2001), (Hyndman et al., 2006), (Plummer-D’Amato et al., 2008). On
retrouve notamment une diminution de la vitesse (Bowen et al., 2001), (Plummer-D’Amato et al., 2008),
de la longueur de pas (Plummer-D’Amato et al., 2008) et une augmentation de la durée des phases de
double appui (Bowen et al., 2001).

Le minimum foot clearance (MFC), identifié comme « contréleur » de la stabilité au cours de la
marche, est incriminé par les patients hémiparétiques qui reportent un accrochage du pied parétique par
manque d’élévation comme une cause de chute (Hyndman et al., 2002). Or une étude récente montre
que le MFC chez les sujets hémiparétiques est augmenté du cbté parétique (3.2cm) par rapport aux
sujets sains (1.5cm) (Little et al., 2014). Par ailleurs, lors d’une tache de marche impliquant la montée
sur un obstacle, étaient observés un MFC significativement plus important et une longueur de pas post-
obstacle réduite chez les patients hémiparétiques comparativement aux sujets sains (Said et al., 2001).
Cela suggeére que le MFC est le reflet d’adaptations des patients hémiparétiques ayant conscience du
risque d’accroche de leur pied au sol. Laugmentation du MFC vise alors a éviter la chute. En cas de
tache complexe nécessitant par exemple de monter sur un obstacle au cours de la marche, la méme
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stratégie de minimisation du risque de trébuchement est mise en place (Said et al., 2001). Malgré cette
stratégie de précaution, les patients présentaient une variabilité importante du MFC pouvant conduire
a un contact involontaire du pied avec 'obstacle a franchir. Ce potentiel risque était également mis en
évidence par le raccourcissement du pas post-obstacle pouvant traduire une difficulté pour effectuer
cette tdche complexe. Dans un autre contexte, lors d’une perturbation de I'équilibre au cours de la
marche par un blocage soudain du membre inférieur non-parétique (ou dominant pour les sujets sains),
les patients hémiparétiques utilisent une stratégie d’abaissement du membre bloqué, minimisant ainsi la
durée d’appui sur le membre parétique au sol, alors que les sujets sains élevent leur membre (Krasovsky
et al., 2013). Il semblerait donc que les stratégies de stabilisation des patients hémiparétiques different
en fonction de la tache incriminée et de la possible anticipation de la perturbation.

Au final, les patients hémiparétiques adaptent les mouvements de leur COM, leurs parameétres
spatio-temporels et leur MFC pour assurer le maintien de la stabilité pendant la marche et pendant
des taches plus complexes comme I'enjambement d’obstacles ou la marche en condition de double
tache. Par conséquent, il semblerait Iégitime de retrouver ces adaptations lors des tdches de navigation
rencontrées au quotidien comme le contournement d’obstacles.

lll.3 La chute chez les patients hémiparétiques

Bien que les patients hémiparétiques mettent en place des adaptations afin d’obtenir une marche
précautionneuse, la chute est une complication fréquente apres un AVC, que ce soit en phase aigué
(Davenport et al., 1996), (Teasell et al., 2002) ou en phase dite “chronique” (au-dela des 6mois suivant
I’AVC selon 'HAS (Haute autorité de Santé, 2012), (Wagner et al., 2009). Le taux de patients chuteurs
est compris entre 10,5 et 47% lors de la phase de rééducation et entre 23 et 70% lorsque les patients
vivent au domicile (Weerdesteyn et al., 2008). Ces chutes ne sont pas sans conséguence, avec un risque
sept fois plus élevé de fracture chez les patients a la suite d’'un AVC, en lien avec la déminéralisation
0sseuse, par rapport a la population générale (Kanis et al., 2001). Le plus souvent, ce sont des fractures
de hanche sachant que la récupération de la mobilité compléte qui s’ensuit est de 38% chez les patients
hémiparétiques et de 69% dans la population générale (Kanis et al., 2001), (Weerdesteyn et al., 2008),
(Ramnemark et al., 1998). Par ailleurs, de nombreux patients chuteurs développent une peur de chuter
a nouveau, menant a une sédentarité et un déconditionnement pouvant conduire a une diminution de
leur indépendance (Weerdesteyn et al., 2008). Ces données font du dépistage du risque de chute une
question importante chez les patients ayant subi un AVC, sachant que les prédictions par les scores
clinigues comme la performance au TUG ont récemment été remises en cause (Persson et al., 2011),
(Barry et al., 2014). Concernant les circonstances des chutes, celles-ci surviennent essentiellement lors
de changements de position pour les patients en phase de rééducation et lors d’activités de marche
variées pouvant impliquer des demi-tours, principalement en intérieur, pour les patients rentrés a leur
domicile (Nyberg and Gustafson, 1995), (Hyndman et al., 2002), (Harris et al., 2005), (Belgen et al.,
2006), (Kerse et al., 2008), (Weerdesteyn et al., 2008). Les difficultés de contrdle de I'équilibre au cours
de la marche sont largement incriminées pour expliquer les chutes des patients hémiparétiques (Nyberg
and Gustafson, 1995), (Forster and Young, 1995), (Hyndman et al., 2002), (Belgen et al., 2006). Tout
cela méne a l'intérét d’explorer les taches de navigation rencontrées au quotidien chez les patients
hémiparétiques.
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IV Restriction de capacités dans I’environnement du patient

L’AVC est a I'origine d’un certain nombre de déficiences (sensitivo-motrices, cognitives) et de
complications ce qui, comme nous I'avons vu, concourt a restreindre voire parfois rendre impossible
certaines capacités telles que I’équilibre et la marche. La Classification Internationale du Fonctionnement,
du Handicap et de la Santé (CIF), élaborée par I'Organisation Mondiale de la Santé (OMS) et entérinée
en 2001 propose une étude des fonctions organiques et structures anatomiques, des activités et de
la participation du patient, et des facteurs environnementaux et personnels (Organisation Mondiale
de la Santé OMS, 2001). Prendre en compte le patient dans son environnement et sa vie quotidienne
apparait en effet incontournable pour I’'analyse des limitations de capacités de celui-ci, d’autant plus
que deux tiers des patients retournent a leur domicile au terme de la rééducation faisant suite a 'AVC
(Jorgensen et al., 1995), (Fery-Lemonnier, 2009). La marche s’envisage ainsi comme la navigation du
patient dans son environnement avec des contournements d’obstacles, des demi-tours plus qu’une
marche en ligne droite stricte sans prise en compte des éléments extérieurs, pourtant présents dans
la vie quotidienne. De la méme maniére, les capacités d’équilibre s’envisagent selon leur composante
statique mais également dynamique, lors d’une tdche de déplacement par exemple. Les données
et études présentées précédemment relatives aux capacités de marche et d’équilibbre pendant la
marche sont essentiellement issues d’évaluations de marche en ligne droite sans cible ni contraintes
environnementales a prendre en compte. Pourtant la prise en compte de ces éléments pourrait
permettre d’envisager le patient dans un environnement quotidien et de contextualiser sa navigation et
le risque de chute.

V Navigation de ’lhomme dans I’environnement, trajectoires et adapta-
tions aux contraintes environnementales

V.1 Navigation et trajectoires chez le sujet sain

La présentation de la marche ne peut se suffire a une description de sa fonction cyclique. Nos
déplacements quotidiens s’effectuent dans un environnement dont la prise en compte est indispensable
tant il conditionne notre marche. Que ce soit en intérieur ou en extérieur, la marche est fréequemment
orientée vers un but. Elle comprend, par conséquent, des trajectoires courbes, des demi-tours et
nécessite le contournement d’obstacles, anticipé ou imprévu. Glaister et al (2007) ont ainsi observé des
changements de direction comptant pour 8 a 50% des déplacements quotidiens (Glaister et al., 2007).
De la méme maniére, Patterson et al (2014) montrent que le contexte environnemental extérieur affecte
la marche des sujets sains (Patterson et al., 2014). La marche est ainsi influencée par les caractéristiques
de I’'espace environnant et par I'objectif de marche (Saelens and Handy, 2008).

Le terme de navigation a été proposé par Berthoz pour relater la marche du sujet en prenant
en compte 'environnement (Berthoz and Viaud-Delmon, 1999). La navigation est définie comme le
processus ou l'activité de déterminer avec précision sa position et planifier un itinéraire (Belmonti et al.,
2013). Le guidage de cette navigation pour obtenir un mouvement optimal passe par une intégration
multisensorielle. Les modalités sensorielles particulierement impliquées sont les afférences visuelles,
proprioceptives et vestibulaires (Berthoz and Viaud-Delmon, 1999). L'intégration de ces afférences par
le systeme nerveux va permettre une représentation des relations du corps et de I'environnement et,
une comparaison avec la trajectoire planifiée, le schéma corporel et les expériences passées (Berthoz
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and Viaud-Delmon, 1999). Pour permettre une navigation efficace et sécurisée, le sujet a ainsi besoin
de connaitre et actualiser les relations spatiales entre lui et les obstacles environnants. Les activités
locomotrices quotidiennes orientées vers un but, pouvant nécessiter le contournement d’obstacles, ont
besoin d’une adaptation permanente du guidage de cette navigation, basée sur I'intégrité de la boucle
afférences-centres intégrateurs-efférences.

Ces derniéres décennies, les études sur I’'analyse de la trajectoire locomotrice lors de la navigation
chezI’homme se sont multipliées. Courtine et Schieppati (2003) ont étudié le suivi de trajectoires rectilignes
et curvilignes par six sujets sains en condition yeux ouverts et yeux fermés (Courtine and Schieppati,
2003). La suppression de la vision induisait peu de déviation de la trajectoire rectiligne mais davantage
pour la trajectoire curviligne. Par rapport a la trajectoire rectiligne, la trajectoire curviligne provoquait une
diminution de la vitesse de progression et une adaptation de la longueur de pas avec un allongement
de la longueur du pas cdté extérieur de la courbe et une réduction de la longueur du pas interne. Les
auteurs montraient également une relation entre la position des pieds et le changement d’orientation du
corps lors des trajectoires curvilignes. L'orientation de la téte suggérait une anticipation de la rotation
en direction de la courbure. Les résultats de cette étude mettent en évidence une adaptation du patron
locomoteur lors d’'un passage d’une trajectoire rectiligne a curviligne, sans changements brusques de
déplacement ou de vitesse. Les modifications cinématiques segmentaires observées étaient étroitement
liées au changement de la trajectoire globale du corps, suggérant que les synergies responsables de
ces adaptations font partie de notre librairie interne (ensemble des caractéristiques physiques du corps,
du monde extérieur et de leurs interactions, construites par apprentissage) (Wolpert and Ghahramani,
2000).

Hicheur et al (2007) ont également étudié les trajectoires locomotrices de six sujets sains mais
dans un contexte de contraintes environnementales ou les trajectoires étaient spontanées et non
imposées comme dans I'étude de Courtine et Schieppati (2003). Dans I'étude de Hicheur et al, les sujets
devaient marcher vers et passer au travers de portes dont la position et I'orientation changeaient au
cours de I'expérimentation (Hicheur et al., 2007). Une analyse de la géométrie et de la cinématique des
trajectoires et du cycle de marche était réalisée. Les résultats montraient des trajectoires locomotrices
tres similaires en termes de vitesse et de géométrie entre les sujets et les répétitions. Cette stéréotypie se
caractérisait par des trajectoires d’autant plus déviées que I'amplitude du tour était grande. De méme,
I'orientation du corps était proportionnelle a la courbure des trajectoires avec une rotation précoce de
la téte anticipatrice du tour. A l'inverse, un placement différent des pieds était retrouvé au cours des
répétitions. Les auteurs concluent a un contrdle global de la trajectoire locomotrice dans I'espace plutdt
qu’a un contrble de pas successifs.

Ces deux études montrent une adaptation segmentaire et une adaptation globale de la trajectoire
locomotrice aux contraintes environnementales chez les sujets sains. Le contrOle de la navigation
apparait basé plutét sur la trajectoire globale que sur une séquence de pointages de pied. Notons
que, pour ces deux études, la déviation de la trajectoire locomotrice a été quantifiée par une approche
spatiale, la distance euclidienne, et que d’autres méthodes sont possibles.

D’autres auteurs se sont intéresses a la négociation d’obstacles lors de navigation. Vallis et
McFadyen (2003) ont étudié le comportement locomoteur de six sujets sains lors du contournement
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spontané d’un obstacle situé a 3m du point de départ de la marche (Vallis and McFadyen, 2003). Par
rapport a une situation contréle sans obstacle, les sujets déviaient latéralement leur centre de masse,
diminuaient leur vitesse de marche, augmentaient leur largeur de pas avant I'atteinte de I'obstacle, sans
modification de la longueur de pas. Ces maodifications en amont du croisement de I'obstacle suggerent
un ajustement planifié pour assurer une déviation contrélée de la trajectoire et un contournement
securisé.

Gérin-Lajoie et al (2005) ont analysé, chez 10 sujets sains, I'évitement d’un sujet immobile ou
mobile, lors d’'une marche orientée vers une cible (Gérin-Lajoie et al., 2005). Deux conditions étaient
envisagées, une condition connue, pour laquelle la position et le déplacement du sujet « obstacle »
étaient connus et une condition inconnue pour laquelle ces informations n’étaient pas mentionnées.
La stratégie d’évitement se décomposait en une phase anticipatoire et une phase d’évitement. Des
adaptationslocomotrices anticipatrices étaient effectivement trouvées avec, une déviation de la trajectoire
locomotrice, un élargissement des pas et une diminution de la longueur des pas. Une diminution de
la vitesse de marche était observée en condition inconnue (réduction plus importante lorsque le sujet
a éviter était mobile) mais la vitesse n’était pas modifiée en condition connue. En condition connue, la
mise en place des adaptations locomotrices anticipatrices était plus précoce, autorisant un mouvement
plus efficace. Quelle que soit la condition, la distance d’évitement était la méme (un tiers de la longueur
de pas) et correspondait a la marge de sécurité lors de I'évitement d’un obstacle. Les résultats de cette
étude mettent en évidence I'existence d’adaptations locomotrices anticipatrices, préplanifiées, dans
I'environnement considéré, lors d’une tache de navigation avec évitement sécurisé d’obstacles.

Au final, la littérature suggere que les trajectoires locomotrices sont anticipées et adaptables
selon les contraintes environnementales de maniere a procurer la navigation la plus efficace possible.

Au-dela des contraintes environnementales, le terme de contrainte peut aussi étre entendu comme
des impératifs auxquels doit répondre la tache. Les déplacements de ’homme dans I’'environnement
répondent ainsi aux contraintes de performance et de stabilité. La régulation de la navigation va alors
dépendre de la priorisation de telle ou telle contrainte (performance ou stabilité) en fonction de I'individu
et du contexte environnemental.

V.2 Navigation et trajectoires chez les patients hémiparétiques

Les parameétres de marche des patients ayant subi un AVC peuvent étre influencés par différents
facteurs comme I'environnement dans lequel les patients se déplacent. Il a par exemple été montré que
les patients hémiparétiques réduisent leur vitesse de marche de presque 20% lorsqu’ils évoluent dans un
centre commercial, comparativement au couloir calme de I’hdpital (Lord et al., 2006). L'imprévisibilité du
lieu public semblait orienter le patient vers une marche précautionneuse. Quelques études récentes se
sont intéressées a I'analyse de taches de navigation réalisées par des patients hémiparétiques. Lorsque
la tAche locomotrice implique de suivre une trajectoire en cercle, les patients adaptent leur cinématique
de marche avec une diminution de la vitesse de marche et de la cinématique articulaire des membres
inférieurs et, une augmentation du rayon de courbure des trajectoires (Duval et al., 2011). Hollands et
al (2010) ont proposé une analyse cinématique de la réalisation du contournement d’obstacles (demi-
tour du Timed Up and go test) par 18 patients hémiparétiques et 18 sujets sains (Hollands et al., 2010).
Les auteurs mettaient en évidence une réorientation de la téte plus prés du point de demi-tour chez
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les sujets hémiparétiques, un nombre de pas identique et une durée plus importante chez les patients
chuteurs, comparativement aux sujets sains.

A ce jour peu de recherches se sont focalisées sur I'étude des trajectoires locomotrices des
patients hémiparétiques. A notre connaissance, une seule équipe a proposé deux études récentes
explorant cette thématique, dans un contexte d’environnement virtuel constitué par des flux optiques
translationnels. Lamontagne et al (2010) ont ainsi comparé les comportements locomoteurs de 10
patients hémiparétiques et 11 sujets sains soumis a des flux optiques orientés dans cing directions
différentes (-40° et -20° vers la gauche ou le coté non-parétique, 0° et +20° et +40° vers la droite ou le
coté parétique) et devant respecter la consigne de marcher en ligne droite (Lamontagne et al., 2010).
Les sujets sains adoptaient un comportement stéréotypé avec une déviation de la trajectoire locomotrice
dans la direction opposée du flux optique (déviation proportionnelle a la perturbation optique). Les
patients hémiparétiques avaient, quant a eux, différents comportements locomoteurs. Trois groupes
pouvaient étre distingués: les patients présentant peu ou pas de déviation de leur trajectoire, les patients
ayant une direction de trajectoire incongrue et les patients déviant leur trajectoire du coté non-parétique
quelle que soit la direction du flux optique. Les auteurs suggéraient que I'altération de la perception ou
de I'intégration sensori-motrice des patients pouvaient étre en cause dans la déviation anormale de leur
trajectoire locomotrice.

Aburub et Lamontagne (2013) ont comparé le comportement locomoteur de 10 sujets
hémiparétiques et 10 sujets sains soumis a des flux optiques lors d’une tache de navigation réalisée
en marchant et en position assise (navigation par la souris d’un ordinateur). Cette condition assise,
réalisée par la main non-parétique, avait pour but d’éliminer 'impact des déficiences sensori-motrices
et difficultés de marche (Aburub and Lamontagne, 2013). La tache de navigation impliquait 3 positions
de la cible a atteindre et 3 orientations du flux optique (20° a gauche, 20° a droite et 0°). En réponse
aux flux optiques, les patients hémiparétiques déviaient leur trajectoire vers la direction désirée, mais
avec des ajustements moindres que les sujets sains. Ce résultat differe de I'étude précédente de
Lamontagne et al (2010) qui mettait en évidence une déviation erronée et variée de la trajectoire des
patients hémiparétigues soumis a un flux optigue (Lamontagne et al., 2010). L’ajout d’une cible dans
la présente étude pourrait expliquer, selon les auteurs, cette différence de résultats en rapport avec un
guidage locomoteur permis par la cible a atteindre. Ainsi la cible fournirait une information visuelle moins
complexe que les flux optiques. Les performances des patients hémiparétiques lors de la navigation
manuelle en position assise n’étaient pas différentes de celles des sujets sains. Ceci suggere que les
défauts de perception visuelle chez les patients ne sont pas les principaux facteurs explicatifs des
deéviations locomotrices. D’autres déficits sensori-moteurs et une priorisation de la marche avec les
fonctions de maintien de I’équilibre et progression dans I'espace semblent étre les facteurs privilégiés.

A notre connaissance, aucune étude n’a exploré les trajectoires locomotrices des patients
hémiparétiques en environnement réel (par contraste avec un environnement virtuel avec flux optiques)
lors de tdches de navigation impliqguant des contournements d’obstacles par exemple, taches
couramment rencontrées au quotidien. Seule une étude focalisant sur la négligence a évalué les
trajectoires locomotrices de patients a la suite d’'un AVC par rapport a une trajectoire rectiligne demandée
(Huitema et al., 2006). Les résultats ont mis en évidence une déviation latérale de la trajectoire (écart
de la trajectoire rectiligne) chez les patients négligents par rapports aux patients ne présentant pas de
négligence.
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VI Vers une analyse instrumentée du Timed Up and Go

VI.1 Le test Timed Up and Go, représentatif de la navigation

Le test Timed Up and Go (TUG) évalue la capacité des patients a se lever d’une chaise, marcher
3m, faire demi-tour et revenir s’asseoir (Podsiadlo and Richardson, 1991). Ce test fait partie des
évaluations locomotrices validées chez le patient hémiparétique et couramment réalisées en routine
clinigue comme le test de 10m pour évaluer la vitesse de marche et le test de 6 minutes pour évaluer le
périmétre de marche (Ng and Hui-Chan, 2005). Le TUG est rapide de passation et, est connu comme
un bon indicateur de la fonction locomotrice (Flansbjer et al., 2005). Il présente I'avantage d’évaluer les
déplacements dans un contexte proche du quotidien, comprenant une marche orientée vers un but
et un demi-tour et, semble donc représentatif des taches de navigation locomotrices. Aussi le TUG
nécessite une coordination entre les phases le composant et des capacités de stabilisation (Ng and
Hui-Chan, 2005).

La performance au TUG est un score chronométrique renseignant sur la durée d’exécution de
I'ensemble des activités le composant. Cette performance est suggérée comme indicateur permettant
d’identifier les patients chuteurs (parmiles personnes agées et les personnes hémiparétiques) (Shumway-
Cooketal., 2000), (Simpson et al., 2011). Cependant, le TUG peut apparaitre peu informatif des facteurs
incriminés dans I'altération de la performance, rendant I’orientation thérapeutique spécifique difficile. De
plus, la performance au TUG peut ne pas étre suffisamment sensible pour discriminer les effets de
telle ou telle thérapeutique ou dépister certains patients a risque de chute. Nous avons par exemple
précédemment comparé 'impact d’un entrainement a la marche sur tapis roulant a un entrainement
de marche au sol sur la performance des patients hémiparétiques au test TUG (Bonnyaud et al., 2014).
[Cabsence de différence selon le terrain d’entrainement a soulevé la question de la sensibilité de la
performance chronométrique globale au TUG et d’un possible effet plafond chez des sujets présentant
une récupération motrice plutdt bonne, ces limites ayant été suggérées par ailleurs (Knorr et al., 2010).
Ainsi, dans cette étude, la performance globale pouvait masquer I'amélioration spécifique de telle phase
du TUG selon I'entrainement réalisé. De plus, de récentes études suggerent que la capacité du TUG
a prédire les chutes est limitée (Andersson et al., 2006), (Persson et al., 2011), (Barry et al., 2014).
Au final, le TUG s’avére comme représentatif des déplacements locomoteurs du quotidien pour les
patients hémiparétiques mais le score chronométrique a I'issue du test apparait comme peu informatif.

A linverse, I'analyse quantifiée du mouvement (AQM) permet une évaluation trés précise de la
marche, faisant aujourd’hui figure de gold standard pour la quantification des paramétres biomécaniques
de marche des patients (McGinley et al., 2009). Cette analyse tridimensionnelle autorise une approche
de la compréhension des troubles du patient hémiparétique et constitue donc une aide a la décision
thérapeutique ; elle permet également une évaluation objective et précise de I'impact des interventions
(Yavuzer et al., 2008). Cependant, I'analyse de la marche par AQM réalisée en routine clinique consiste
en une évaluation de la marche lancée en ligne droite, ce qui s’avére peu représentatif des activités
locomotrices quotidiennes.
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V1.2 Une instrumentation du TUG

Au vu des données précédentes, il existerait un réel intérét d’évaluer les taches de navigation
composant le TUG au moyen de I’analyse quantifiée du mouvement et proposer ainsi une instrumentation
du TUG. Létude biomécanique du TUG permettrait une analyse des différentes composantes
(cinématique, stabilité) aboutissant a une performance donnée. Ceci est en accord avec de récentes
études soulignant I'utilité d’approfondir le TUG (Wall et al. 2000), (Faria et al., 2013). En effet, Wall et
al (2000) ont proposé le Expanded Timed Up and Go test permettant une analyse indépendante des
phases constituant le TUG afin d’identifier celles incriminées dans la diminution de performance (Wall
et al. 2000). Plus récemment, Faria et al (2013) ont suggéré I'utilisation d’une échelle d’évaluation
biomécanique de chaque sous-tadche du TUG, le TUG-Assessment of Biomechanical Strategies (TUG-
ABS) (Faria et al., 2013). Développée en 15 items, cette échelle permet aux thérapeutes de coter 3
items relatifs a la tache assise debout, 5 relatifs a la marche, 4 relatifs au demi-tour et 3 relatifs a la
tache debout assise, avec 3 réponses possibles pour chaque item, lors de la réalisation du TUG par
les patients. L'objectif d’'une analyse du TUG par phase et d’une approche biomécanique de chacune
de ses phases permettrait de mettre en évidence les difficultés rencontrées par le patient et ainsi
d’orienter spécifiquement la prise en charge thérapeutique. Cela répondrait également aux besoins
récemment mis en évidence comme, par exemple, la nécessité d’approfondir I'étude du demi-tour du
TUG réalisé par des patients hémiparétiques (Hollands et al., 2010), I'importance de I’évaluation de la
stabilité au cours de la marche (Hak et al., 2013b), (Little et al., 2014) et I'intérét d’analyser les stratégies
possiblement utilisées par les patients lors de taches de navigation et de négociation d’obstacles en
situation réelle (Vallis and McFadyen, 2003), (Hicheur et al., 2007).

Nous avons également précédemment montré qu’il existait des liens entre le score chronométrique
du TUG et les paramétres biomécaniques de marche (obtenus au cours d’'une AQM conventionnelle)
chez les patients hémiparétiques (Bonnyaud et al., 2015). Ainsi, le pourcentage de simple appui coté
parétique était le facteur le plus explicatif de la performance chronométrique. Ceci suggere que la
performance globale du TUG est un indicateur du c6té parétique et plus spécifiqguement du contrble
de la stabilité du coté parétique. Bien que ces données s’averent intéressantes, 'existence d’un lien
entre un score fonctionnel représentant les activités locomotrices du quotidien et des parametres
biomécaniques précis au cours d’une marche en ligne droite ne semblent pas aussi pertinent que
I'analyse directe des parameétres biomécaniques au cours d’une tache de navigation. Par conséquent,
une approche quantitative des mouvements au cours de taches de navigation, par instrumentation
du TUG, pourrait permettre de mieux comprendre les mécanismes biomécaniques sous-tendant la
performance aux différentes phases du TUG et, de fait, pourrait permettre de mieux guider la prise en
charge thérapeutique des patients en fonction des phases du TUG les plus altérées.

Ces dernieres années, les études évaluant des gestes quotidiens en laboratoire se sont multipliées,
renseignant sur les stratégies de réalisation et ouvrant le champ de ce type d’analyse pour évaluer les
patients. De nombreux auteurs ont ainsi mené une analyse biomécanique instrumentale des taches
assis debout et lever marche chez des sujets hémiparétiques et des sujets sains (Cheng et al., 1998),
(Galli et al., 2008), (Lecours et al., 2008), (Dion et al., 2003), (Frykberg et al., 2009). Cheng et al (1998)
ont ainsi montré que les patients hémiparétiques chuteurs exercaient moins d’appui et présentaient plus
d’oscillations médio-latérales par rapport aux patients non-chuteurs et aux sujets sains lors d’une tache
assis debout (Cheng et al., 1998). Pour cette méme tache, une flexion excessive du tronc associée a
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une flexion dorsale de cheville majorée ont été trouvées chez les patients hémiparétiques par rapport
aux sujets sains, mouvements supposés répondre a une stratégie de stabilisation (Galli et al., 2008).

De récentes études ont porté sur I'analyse biomécanique du TUG dans sa globalité ou en partie
chez des patients hémiparétiques, des patients parkinsoniens et des sujets sains (Weiss et al., 2010),
(Zampieri et al., 2010), (Herman et al., 2014), (Salarian et al., 2010), (Hollands et al., 2010). Hollands et
al (2010) ont ainsi étudié la phase du demi-tour du TUG chez des patients hémiparétiques (chuteurs et
non-chuteurs) et des sujets sains (Hollands et al., 2010). Les résultats mettaient en évidence une durée
de demi-tour plus importante chez les patients hémiparétiques chuteurs par rapport aux sujets sains
(mais pas de différence avec les patients non-chuteurs), un nombre de pas identique entre les groupes
et une orientation de la téte plus proche du point de rotation pour les patients hémiparétiques, lors du
demi-tour coté non-parétique, comparativement aux sujets sains. Aucune différence cinématique de
rotation axiale n’était retrouvée, ne permettant pas la discrimination des patients chuteurs. Ceci suggérait
que d’autres parametres explicatifs pouvaient étre mis en jeu. D’autre part, I'instrumentation du TUG
a récemment été réalisée au moyen de capteurs embarqués (accéléromeétres, gyroscopes) chez des
patients parkinsoniens et des sujets sains (Weiss et al., 2010), (Zampieri et al., 2010), (Salarian et al.,
2010), (King et al., 2012), (Herman et al., 2014). Cette approche a notamment permis de montrer que
les patients parkinsoniens adoptaient une amplitude lors de la phase de lever, une vitesse de rotation
du tronc plus faibles et une durée ainsi qu’un nombre de pas aux demi-tours plus importants que les
sujets sains (traduisant une stratégie précautionneuse), alors que le score chronomeétrique ne trouvait
pas de différence entre les deux populations (Zampieri et al., 2010), (Salarian et al., 2010), (Weiss et
al.,, 2010), (King et al., 2012). Ces études suggérent que I'analyse biomécanique du TUG compléte
I'analyse de la performance chronométrique avec une quantification des mouvements permettant une
meilleure compréhension des mécanismes sous-tendant la performance. Cependant, a ce jour, ce
genre d’analyse du TUG n’a jamais été proposé pour les patients hémiparétiques.
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A la suite d’'un AVC, les patients hémiparétiques présentent des troubles de la marche dont
I'origine est multifactorielle (déficits de la commande motrice volontaire, spasticité, syncinésies, déficits
sensoriels, troubles cognitifs, complications orthopédiques). Ces troubles se traduisent par une
perturbation des parametres spatio-temporels (avec notamment une diminution de la vitesse et de
la longueur de pas et une augmentation de la largeur de pas et du temps de double appui) et des
parameétres de la cinématique articulaire (avec une diminution des pics de flexion en phase oscillante
et des pics d’extension en phase d’appui coté parétique, a I'exception d’une possible hyperextension
de genou en phase d’appui), comparativement a des sujets sains. Ces parametres permettent une
meilleure compréhension de la diminution de la performance de marche des patients et donc d’orienter
la prise en charge thérapeutique.

Par ailleurs, ces derniéres décennies, plusieurs études ont mis en évidence I'intérét d’étudier la
stabilité au cours de la marche chez les patients hémiparétiques. Parmi les parametres utilisés pour
évaluer cette stabilité au cours de la marche figurent les déplacements du COM, les paramétres spatio-
temporels et le minimum foot clearance. Les déplacements du COM sont augmentés chez les patients
hémiparétiques, signe d’un défaut de leur stabilité (Detrembleur et al., 2003), (Clark et al., 2012). La
vitesse de marche, la largeur et la longueur de pas, le pourcentage de phase de double appui et de
simple appui cb6té parétique sont également proposés comme indicateurs de stabilité des patients
hémiparétiques (Patterson et al., 2008), (Chen et al., 2005), (Kao et al., 2014), (Hak et al., 2013b).
Le MFC, augmenté chez les patients hémiparétiques (Little et al., 2014), est proposé comme étant
le reflet d’adaptations pour prévenir les risques de chute par accrochage du pied au sol. De plus, les
patients hémiparétiques diminuent leur vitesse et la cinématique articulaire des membres inférieurs
pour répondre aux contraintes environnementales, comme la marche en cercle ou la marche en centre
commercial (Lord et al., 2006), (Duval et al., 2011).
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D’autre part, de récentes études suggérent que I'évaluation des trajectoires locomotrices chez les
patients hémiparétiques, renseigne sur leur adaptation aux contraintes environnementales. L'analyse
des trajectoires locomotrices dans un contexte d’environnement virtuel avec flux optique a ainsi permis
de mettre en évidence une déviation de la trajectoire des patients hémiparétiques différente de celle des
sujets sains (Lamontagne et al., 2010), (Aburub and Lamontagne, 2013). Ces maodifications peuvent
étre envisagées comme une prise en compte par le patient de la complexité de la tache.

Au final, les récentes propositions d’analyse de la stabilité au cours de la marche et des trajectoires
locomotrices completent I'évaluation plus fréquente de la cinématique de marche chez les patients
hémiparétiques. Ces évaluations, autorisant une meilleure compréhension des déplacements des
patients dans I'environnement, pourraient permettre d’orienter plus spécifiquement la prise en charge
thérapeutique.

[’évaluation des capacités de marche des patients hémiparétiques en routine clinique passe par
des tests fonctionnels aboutissant a I’'obtention d’une performance globale, souvent chronométrique. A
l'inverse, I’AQM offre la possibilité d’obtenir une quantification des paramétres de marche. La limite de
chacune de ces approches constitue le point fort de I'autre approche. Ainsi le TUG permet d’envisager
la marche comme une navigation du patient dans son environnement avec des taches de marche
orientée et de demi-tour, mais n’est, a ce jour, évalué qu’avec un score chronométrique global ne
permettant pas la compréhension des mécanismes impliqués dans les variations de la performance. A
I'inverse, I’évaluation de la marche par AQM offre des résultats concernant chacune des composantes
du mouvement, mais, conventionnellement, se limite a I'’étude de la marche lancée, en ligne droite
stricte sans prise en compte des éléments environnants, pourtant présents dans la vie quotidienne.
Linstrumentation du TUG pour une analyse biomécanique des taches de navigation répond donc aux
besoins soulignés par la littérature avec notamment une analyse spatio-temporelle et de la cinématique
articulaire (Faria et al., 2013), (Zampieri et al., 2010), (Salarian et al., 2010), une analyse spécifique du
demi-tour (Hollands et al., 2010) et une analyse des trajectoires locomotrices. Une analyse instrumentée
du TUG permettra ainsi une étude biomécanique des troubles locomoteurs des patients hémiparétiques
au plus proche des conditions quotidiennes et donc une meilleure compréhension des mécanismes
impliqués dans la diminution de la performance observée chez ces patients. Ceci pourrait permettre a
terme d’envisager une orientation optimale de la prise en charge thérapeutique des patients présentant
des séquelles d’AVC. Au total, pour caractériser précisément les déplacements des patients, une
quantification (1) de la cinématique, (2) de la stabilité et (3) des trajectoires locomotrices en fonction de la
tache locomotrice réalisée (marche orientée vers une cible, demi-tour) semble nécessaire et pertinente.

L'objectif principal de cette thése était donc de caractériser I'organisation des patients
hémiparétiques au cours des taches de navigation du TUG (marche orientée vers la cible, demi-tour et
marche orientée vers le siege) et de définir la ou les stratégies d’adaptations possiblement utilisées par
les patients. Pour cela nous proposons une analyse biomécanique de leurs déplacements locomoteurs
lors de 3 phases du TUG (Aller, Demi-tour, Retour) permettant une étude de la cinématique, de la
stabilité et des trajectoires locomotrices. Ce travail repose sur 4 études évaluant et comparant ces
différents paramétres au moyen d’un systéme optoélectronique chez des patients hémiparétiques et
des sujets sains.
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La premiere étude avait pour objectif de déterminer quels parametres spatio-temporels et
cinématiques évalués au cours des phases de marche orientée et de demi-tour du TUG étaient le plus
liés a la performance chronométrique des phases correspondantes chez des patients hémiparétiques.
Nous avons émis I'hypothese que le pourcentage de phase de simple appui et le pic d’extension de
hanche du c6té parétique seraient particulierement liés a la performance des sous-taches de marche
orientée et de demi-tour du TUG. Ces hypotheses étaient basées sur le fait que le pourcentage de
phase de simple appui au cours de la marche en ligne droite a été montré comme étant le principal
facteur explicatif de la performance totale au TUG (Bonnyaud et al., 2015) et que le pic d’extension de
hanche a été montré comme associé a la vitesse de marche (Lamontagne and Fung, 2004).

La seconde étude avait pour objectifs de (1) comparer les paramétres spatio-temporels et
cinématiques évalués au cours des phases de marche orientée et de demi-tour du TUG entre les patients
hémiparétiques et des sujets sains et de (2) déterminer si les parametres explicatifs de la performance
de chacune des phases étudiées différaient entre les patients hémiparétiques et des sujets sains. Les
parametres spatio-temporels et cinématiques étant diminués chez les patients hémiparétiques au cours
de la marche en ligne droite (Kerrigan et al., 1991), (Olney and Richards, 1996), (Perry, 1992), (von
Schroeder et al., 1995) nous avons émis I'hypothése qu’ils seraient également diminués au cours des
phases de navigation du TUG. Nous émettions aussi I'hypothése que les parameétres explicatifs des
phases du TUG différaient entre les patients hémiparétiques et des sujets sains.

La troisieme étude visait a (1) analyser la stabilité au cours des phases de marche orientée et de
demi-tour du TUG en étudiant les déplacements verticaux et médio-latéraux du COM et le MFC des
patients hémiparétiques et de les comparer a ceux des sujets sains ; (2) évaluer les relations entre les
parameétres du COM et le MFC et la performance chronométrique des phases correspondantes ; et
(8) comparer les paramétres du COM et le MFC entre les patients hémiparétiques chuteurs et non-
chuteurs. Nous supposions que les déplacements verticaux et médio-latéraux du COM seraient de
plus grande amplitude et de plus grande vitesse et que, le MFC serait plus important chez les patients
hémiparétiques que chez les sujets sains, en se basant sur les données publiées sur la stabilité a la
marche en ligne droite chez les patients hémiparétiques (Detrembleur et al., 2003), (Little et al., 2014).
Nous émettions également I’hypothése que les paramétres du COM et le MFC seraient positivement
corrélés ala performance chronométrique des phases correspondantes du TUG et que les déplacements
du COM seraient plus importants et le MFC serait réduit chez les patients hémiparétiques chuteurs, en
comparaison avec les non-chuteurs.

La quatrieme étude avait pour objectifs (1) d’analyser les trajectoires locomotrices des patients
hémiparétiques lors des phases de marche orientée et de demi-tour du TUG et les comparer a celles
des sujets sains ; (2) de comparer les parametres des trajectoires entre les patients hémiparétiques
chuteurs et les non-chuteurs et entre les patients hémiparétiques droits et gauches; et (3) évaluer la
corrélation entre les parametres de trajectoire et le score a la BBS des patients hémiparétiques. Nous
émettions 'hypothése que les trajectoires des patients hémiparétiques seraient déviées par rapport
a celles des sujets sains et particulierement lors de la phase du demi-tour du TUG, phase la plus
complexe en terme de stabilité (Lamontagne et al., 2010). Nous émettions également I’hypothése que
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les trajectoires seraient différentes entre les patients hémiparétiques chuteurs et les non-chuteurs et
seraient plus déviées chez les patients hémiparétiques gauches que chez les patients hémiparétiques
droits du fait de 'altération de la perception de la verticale a la suite d’un AVC hémisphérique droit. Nous
supposions par ailleurs que les trajectoires les plus longues seraient associées a de faibles scores a la
BBS, en considérant que les patients les plus instables dévieraient le plus de la trajectoire optimale pour
assurer une bonne stabilité.
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| Population

Vingt-neuf patients hémiparétiques et vingt-cing sujets sains ont accepté de participer au
protocole aprés explication de celui-ci et ont donné leur consentement écrit. Les patients inclus étaient
hospitalisés ou régulierement suivis dans le service de médecine physique et rééducation de I'hopital
Raymond Poincaré, Garches. Les criteres d’inclusion étaient: avoir plus de 18 ans, une hémiparésie
due a un AVC, la capacité de réaliser plusieurs TUG sans aide technique et étre suffisamment stable
meédicalement pour participer au protocole. Les patients étaient exclus s'ils présentaient d’autres
troubles neurologiques, orthopédiques ou médicaux pouvant interférer avec le test. Dans les études
2, 3 et 4, les patients hémiparétiques ont été comparés a des sujets sains, appariés en age. Les
sujets sains n'avaient pas d’antécédents neurologiques ou orthopédiques pouvant interférer avec la
locomotion. Ce protocole a recu I'approbation du comité d’éthique institutionnel (Comité de protection
des personnes lle de France XI, Ref 13005. CNIL, Ref DR-2013-283) et a fait I'objet d’'un dép6t sur le
site ClinicalTrials.gov (Identifier: NCT01807273).

Les caractéristiques des patients hémiparétiques et des sujets sains figurent dans le tableau 2.

52



Chapitre 2: Méthodologie générale

Tableau 2: Caractéristiques des patients hémiparétiques et des sujets sains.

Patients

e 18H/11F  542+122 168x009 732+162 17 gauches / 12 droits
hémiparétiques

Sujets sains 1MTH/14F 51,6 +8,7 1,67+0,11 656=+14,7 23 gauches / 2 droits

Il Matériel de mesure et procédure expérimentale

Afin de répondre a nos objectifs, les données biomécaniques de taches de navigation ont été
quantifiées au moyen d’une analyse tridimensionnelle du mouvement. Ce chapitre décrit le systeme et le
modele utilisés, la procédure expérimentale, le traitement des données, les parameétres biomécaniques
analysés et enfin les données cliniques.

.1 Systeme optoélectronique et modéle biomécanique

Un systéme d’analyse du mouvement optoélectronique a été utilisé (Motion Analysis Corporation,
Santa Rosa, CA, USA), avec une fréquence d’échantillonnage de 100Hz. Ce systéme se compose de
8 caméras infrarouges (Eagle, 1.3 Mpixels) et de marqueurs passifs réfléchissants. Les caméras sont
placées de facon a correspondre au volume dans lequel évoluaient les sujets lors de la réalisation du
TUG. Chaque marqueur doit ainsi étre percu simultanément par au moins deux caméras afin de pouvoir
reconstruire son positionnement dans les trois plans de I’'espace (Bonnefoy et al., 2005a). Le logiciel
Cortex (Motion Analysis Corporation, Santa Rosa, CA, USA) permet I'acquisition, la visualisation en
temps réel des marqueurs et la premiere phase de traitement des données (traitement des trajectoires
des marqueurs).

Figure 5: Capture d’écran d’une scéne de visualisation du set de marqueurs utilisé pour la modélisation du
corps entier. Exemple d'identification et de suivi d'un des capteurs du pelvis par les caméras 1-3-5-6.
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Le modele Helen Hayes a été utilisé (Kadaba et al., 1990). Il définit le placement de marqueurs
identifiant les segments des participants (modele a 12 segments). Le tableau 3 présente les marqueurs
du modeéle et les repéres anatomiques de placement et 'annexe 1 présente le placement de ces
margueurs sur un sujet.

Tableau 3: Marqueurs du modeéle Helen Hayes et repéres anatomiques de placement.

R. Shoulder sommet de I'acromion droit

L. Shoulder sommet de 'acromion gauche

R. Elbow épicondyle latéral de 'humérus droit

L. Eloow épicondyle latéral de 'humérus gauche

R. Wrist milieu des styloides radiale et ulnaire droites, face dorsale

L. Wrist milieu des styloides radiale et ulnaire gauches, face dorsale

Offset pointe de la scapula droite

R. Asis épine lliague antéro-supérieure droite

L. Asis épine lliaque antéro-supérieure gauche

V. Sacral partie supérieure du sacrum, jonction avec L5

R. Thigh segment cuisse droit

L. Thigh segment cuisse gauche

R. Knee condyle latéral du fémur droit, dans I'axe de flexion/extension de genou
L. Knee condyle latéral du fémur gauche, dans I'axe de flexion/extension de genou

R. Knee medial

L. Knee medial

condyle médial du fémur droit, dans I'axe de flexion/extension de genou

condyle médial du fémur gauche, dans I'axe de flexion/extension de genou

R. Shank segment jambier droit

L. Shank segment jambier gauche

R. Ankle malléole latérale de la cheville droite dans I'axe de flexion/extension de cheville

L. Ankle malléole latérale de la cheville gauche dans I'axe de flexion/extension de cheville
R. Ankle Medial malléole médiale de la cheville droite dans I'axe de flexion/extension de cheville
L. Ankle Medial malléole médiale de la cheville gauche dans I'axe de flexion/extension de cheville
R. Heel partie postérieure du calcaneum droit dans 'alignement du marqueur orteil

L. Heel partie postérieure du calcaneum gauche dans I'alignement du marqueur ortell

R. Toe entre le 2eme et le 3eme métatarse droit dans I'alignement du marqueur talon

L. Toe entre le 2eme et le 3eme métatarse gauche dans I'alignement du marqueur talon
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Des marqueurs ont été ajoutés sur les grands trochanters et les crétes iliaques afin de faciliter
la reconstruction des trajectoires des marqueurs du pelvis. Au total, trente marqueurs ont été utilisés.
Les mesures sont influencées par le systeme utilisé mais également par le placement des marqueurs
(McGinley et al., 2009). Par conséquent, le méme examinateur a positionné les marqueurs pour
I'ensemble des sujets étudiés.

Le positionnement de ce set de marqueurs permet de définir des repéeres segmentaires afin
de quantifier leurs déplacements relatifs ou absolus. Cette quantification des déplacements relatifs
correspond a la cinématique articulaire et se déroule en deux étapes:

- la définition des repéres segmentaires représentatifs de la structure osseuse: pour chaque
segment, un repére est défini a partir des marqueurs posés sur le sujet et des centres articulaires. Le
tableau 4 présente les reperes segmentaires.

- le calcul des angles d’Euler: ce calcul consiste en la quantification de trois rotations successives
autour des axes XYZ selon la séguence choisie. Pour le modéle Helen Hayes et avec les repéres
définis précédemment, nous avons la séquence ZYX soit flexion/extension puis, abduction/adduction
ou varus/valgus puis, rotation interne/rotation externe (Grood and Suntay, 1983), (Kadaba et al., 1990).

Tableau 4: Repéres segmentaires d’aprés le modele Helen Hayes.

o origine au milieu des 2 épines iliaques antéro-supérieures

X dirigé vers le bas, orthogonal au plan formé par les marqueurs Asis et sacrum
y dirigé vers l'avant

z dirigé latéralement vers la droite

o origine au centre articulaire de la hanche

X dirigé vers le centre articulaire du genou

y dirigé vers l'avant

z dirigé latéralement pour la cuisse droite, médialement pour la cuisse gauche
o] origine au centre articulaire du genou

X dirigé vers le centre articulaire de la cheville

y dirigé vers l'avant

z dirigé latéralement pour la jambe droite, médialement pour la jambe gauche
0 origine au centre articulaire de la chevile

X dirigé vers le bas, orthogonal aux axes y et z

y dirigé vers l'avant du marqueur talon vers le marqueur orteil

dirigé latéralement pour le pied droit, médialement pour le pied gauche,
z orthogonal au plan formé par le marqueur talon, le marqueur orteil et le centre
articulaire de la cheville
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Le positionnement de ce set de marqueurs permet également la quantification des déplacements
du centre de masse, COM, dans les trois plans de I'espace (COMx pour le plan antéro-postérieur,
COMy pour le plan médio-latéral et COMz pour le plan vertical). La position du COM du sujet est
le barycentre des centres de masses des segments modélisant le sujet. Son calcul est permis par
I'utilisation de la table anthropométrique proposée par Dempster en 1955 (Dempster, 1955), la masse
de chaque segment étant proportionnelle a la masse totale du sujet et la position du centre de masse
de chaque segment étant proportionnelle aux marqueurs du segment considéré.

La table anthropométrique proposée par Dempster en 1955 a été utilisée chez les patients
hémiparétiques a défaut d’une table anthropométrique spécifique a cette population. D’autres auteurs
ont également fait ce choix méthodologique pour la détermination des déplacements du COM chez
des patients neurologiques et des sujets agés au cours de la marche (Catena et al., 2007) (Hahn
and Chou, 2003). Des modifications morphologiques comme I'atrophie, les infiltrations adipeuses, la
décalcification font suite a 'AVC (Hachisuka et al., 1997), (Ryan et al., 2002), (Lam et al., 2016) et
légitimeraient I'utilisation d’une table anthropométrique pour les patients hémiparétiques. Néanmoins, a
notre connaissance, aucune table spécifique pour cette population n’existe. I[déalement, la détermination
du centre de masse des patients hémiparétiques peut se faire a partir de données issues de I'imagerie
meédicale, ce qui n’était pas possible dans le cadre de nos études. D’autres tables existent comme
celle de Zatsiorsky (1990) ou celle de McConville (1980) (Zatsiorsky et al., 1990), (McConville et al.,
1980). Cependant ces tables ont été établies a partir de données de sujets jeunes (dge moyen de 24,8
ans pour la table de Zatsiorsky et de 27 ans pour McConville), alors que les données de la table de
Dempster correspondent a des sujets d’'une moyenne d’age de 69 ans, ce qui est plus proche de I'age
de la population inclue dans nos études. La table proposée par Dempster est par ailleurs frequemment
utilisée par la communauté biomécanique pour I'analyse tridimensionnelle de la marche de patients
hémiparétiques (Chen et al., 2005), (Cruz et al., 2009), (Hollands et al., 2010).

Parallelement a cette approche multisegmentaire basée sur une table anthropométrique, une
autre méthode est proposée pour suivre les déplacements du COM lors de la marche : la quantification
des trajectoires d’'un margqueur unique positionné sur le sacrum (Clark et al., 2012). Situer le COM sur
le sacrum, en périphérie, nous parait moins pertinent que I'approche multisegmentaire. L'implication
de la totalité des segments dans la stabilité d’'un sujet légitime la détermination multisegmentaire du
COM par rapport a un margueur unique (Marigold and Misiaszek, 2009). Gard et al (2004) trouvent
une supériorité de I'analyse multisegmentaire par rapport au marqueur unique pour I'analyse des
déplacements verticaux du COM lors de la marche, lorsque la vitesse de celle-ci dépasse 0,8m/s
(Gard et al., 2004). Aussi, la tres récente étude de Tisserand et al (2016) montre qu’un modele par
marqueur unique sur le sacrum n’est pas approprié pour estimer le positionnement du COM lors de
mouvements dynamiques comme la marche et le rattrapage d’équilibre (Tisserand et al., 2016). Dans
nos études, la tache impliquant des mouvements dynamiques avec marche et maintien de la stabilité
et, la vitesse moyenne des participants excédant 0,8m/s, I'approche multisegmentaire nous a semblé
de fait justifiée. De plus, Rabuffetti et Baroni (1999) montrent qu’un modéle multisegmentaire est plus
précis qu’un modeéle dit « approximatif » basé sur le pelvis (modélisé par 4 marqueurs) pour déterminer
le COM lors de mouvements libres et de sauts (Rabuffetti and Baroni, 1999). Du fait de I’'ensemble des
raisons précitées, notre choix s’est porté sur I'utilisation de la méthode multisegmentaire avec la table
proposée par Dempster pour le suivi du COM des patients hémiparétiques et des sujets sains lors du
TUG.
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I1.2 Procédure expérimentale

Les patients hémiparétiques et les sujets sains ont réalisé le TUG sans aide technique a vitesse
spontanée.

La littérature souligne linfluence des conditions de passation du TUG ou des taches assis
debout sur la performance. Ainsi Janssen et al (2002) ont montré que la hauteur de chaise, la présence
d’accoudoirs, le positionnement des pieds, des genoux et du tronc et I'utilisation des bras impactent
le mouvement assis debout (la premiere phase du TUG), avec une diminution des moments articulaires
des membres inférieurs lorsque le siege est haut, lorsque des accoudoirs sont utilisés et lorsque le
positionnement des pieds est postérieur (Janssen et al., 2002). Brunt et al (2002) ont également mis en
évidence une durée de passage assis debout plus importante lorsque le membre inférieur non-parétique
était placé en avant ou sur une cale (en hauteur) par rapport au membre inférieur parétique (Brunt et al.,
2002). Heung et Ng (2009) ont montré que la hauteur du siege et le coté du demi-tour influencaient la
performance au TUG des patients hémiparétiques, avec une performance plus rapide lorsque I'assise
était haute et le demi-tour était effectué du cdté parétique (Heung and Ng, 2009). De méme, le port et
le type de chaussures peuvent impacter la performance au TUG (Arnadottir and Mercer, 2000). De ce
fait, deux conditions ont été évaluées : la condition spontanée et la condition standardisée.

Dans les deux conditions, les participants portaient le méme modele de chaussures, étaient
assis sur un méme tabouret fixe et les bras étaient positionnés le long du corps (Gilleard et al., 2008),
(Frykberg et al., 2009).

La condition spontanée représente les conditions de vie quotidienne, avec une hauteur de siege
conventionnelle (45¢cm) (Frykberg et al., 2009), une position de départ spontanée pour les membres
inférieurs (Frykberg et al., 2012) et le tronc (les bras restant le long du corps pour ne pas participer au
lever) et aucune instruction quant au sens du demi-tour n’était délivrée. La consigne était alors «Au
signal, vous vous léverez, irez faire le tour du cdne et vous reviendrez vous asseoir, a vitesse normale,
sans utiliser les bras pour vous lever et vous asseoir».

La condition standardisée vise a rendre I'examen comparable entre les participants. La hauteur
du siege correspondait a la distance téte de la fibula / sol (Gilleard et al., 2008), (Janssen et al., 2002),
les genoux sont fléchis a 100° et les pieds placés symétriquement (Brunt et al., 2002), (Cheng et al.,
1998). Une marque au sol et une vérification goniométrique des amplitudes des genoux permettaient
de reproduire cette position. Au départ, les participants devaient se redresser (Roy et al., 2006),
(Gilleard et al., 2008) et effectuer le demi-tour coté parétique (non-dominant pour les sujets sains). La
consigne était «Au signal, vous vous leverez, irez faire le tour du cdne du cdté droit/gauche (selon le
coté de I'hémiparésie pour les patients hémiparétiques/ le c6té non-dominant pour les sujets sains) et
VOUS reviendrez vous asseoir, a vitesse normale, sans utiliser les bras pour vous lever et vous asseoir».

Trois essais ont été réalisés et enregistrés pour chaque condition. Afin que le positionnement
et les consignes de la condition standardisée n’influencent pas la condition spontanée, cette derniére
était réalisée en premier (Roy et al., 2006). Les consignes étaient redonnées aux participants avant
chaque essai, spécifiguement selon la condition a effectuer et les participants étaient repositionnés
avant chague essai pour la condition standardisée.
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Figure 6: Capture d’écran d’une scéne de demi-tour (vue sagittale) d’'un patient hémiparétique lors de la
passation du TUG au laboratoire.

Il Traitement des données

Une premiere phase de traitement des données consiste a analyser les trajectoires des différents
marqueurs positionnés (interpolation et filtrage : filtre passe-bas Butterworth d’ordre 4 avec une fréquence
de coupure a 6Hz). Ce traitement a été réalisé via le logiciel fourni avec le systeme optoélectronique
(Cortex, Motion Analysis Corporation, Santa Rosa, CA, USA).

La seconde phase de traitement des données consiste a identifier:

- Les événements du cycle de marche: un cycle correspondant a une pose talon jusgu’a la
prochaine pose talon du méme pied (Perry, 1992). Les événements de contact du pied avec le sol et
décollement des orteils sont identifiés pour découper le cycle en phase oscillante et phase d’appui.

- Les 3 phases du TUG: (i) la phase Aller de marche orientée vers le cone. Elle commencait du
décollement du premier pied et se terminait lors de la premiere pose du pied en direction du demi-
tour ; (i) la phase Demi-tour (contournement du céne). Elle commencait de la premiere pose du pied en
direction du demi-tour et se terminait lors de la premiere pose du pied dans I'alignement du tabouret
(Thigpen et al., 2000) ; (iii) la phase Retour de marche orientée vers le tabouret. Elle commencait lors de
la premiere pose du pied dans I'alignement du tabouret et se terminait avec la derniere pose du pied
avant le demi-tour pour s’asseoir (Frykberg et al., 2009), (Thigpen et al., 2000), (Faria et al., 2012).

Cette identification des événements a été réalisée au moyen du logiciel Mokka (Motion Kinematic
& Kinetic Analyzer, http://biomechanical-toolkit.github.io/mokka/index.html).

IV Les paramétres analysés

A lissue du découpage des cycles et des phases, une routine développée sous Matlab (R14,
The MathWorks Inc., Natick, MA, USA) a été utilisée pour le calcul des paramétres biomécaniques de
chacune des trois phases du TUG analysées. Le déplacement relatif des segments permet le calcul des

parameétres cinématiques articulaires du TUG.
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IV.1 Les parameétres spatio-temporels

La performance de chacune des phases étudiées du TUG correspond a la durée (en sec) de ces
phases.

Les parametres spatio-temporels analysés au cours de chague cycle de marche et chaque phase
du TUG étaient:

- La vitesse de marche (en cm/s), calculée a partir de la longueur de I’enjambée (distance entre
le marqueur talon lors de la pose du pied et le méme marqueur talon de la pose de pied suivante) et la
durée du cycle ;

- La cadence (en nombre de pas / min), calculée a partir des événements pose talon ;

- La longueur de pas (en cm) des deux cétés, distance calculée, pour la longueur du pas gauche,
entre le marqueur talon du pied droit et la projection du marqueur talon du pied gauche sur la ligne
d’avancement du pied droit, et inversement pour le pas droit;

- La largeur de pas (en cm), distance calculée entre un marqueur talon et sa projection sur la ligne
d’avancement du pied opposé;

- Le pourcentage de phase de simple appui (en % du cycle de marche) des deux cbotés, calculé
entre I'événement pose du pied considére et I'événement suivant décollement du méme pied;

- Le pourcentage de phase oscillante (en % du cycle de marche) des deux cotés, calculé entre
I’événement décollement du pied considéré et I’événement suivant pose du méme pied;

IV.2 Les parametres de la cinématique articulaire

Les paramétres de la cinématique articulaire analysés au cours de chaque cycle de marche, pour
les phases Aller, Demi-tour et Retour, étaient les pics de flexion et extension de hanches, de genoux et
de chevilles des deux cotés. Pour la cheville, le pic de dorsiflexion était calculé uniqguement sur la phase
oscillante.

Les principaux déficits d’amplitude et schémas de marche décrits chez les patients hémiparétiques
ont orienté ce choix d’une analyse dans le plan sagittal. Ainsi, la phase oscillante est souvent caractérisée
par un déficit des pics de flexion (Kerrigan et al., 1991), (Olney and Richards, 1996), (Chen et al., 2005)
et la phase d’appui par un déficit d’extension de hanche (De Quervain et al., 1996), par un possible
recurvatum de genou ou une flexion excessive (Olney and Richards, 1996) et un déficit de dorsiflexion
(possible équin) et de plantarflexion de cheville (Olney and Richards, 1996), (Viel, 2000).

IV.3 Les déplacements du centre de masse, comme parameétres de stabilité,
etle MFC

Nous avons vu dans le chapitre précédent que les déplacements du COM peuvent étre considérés
comme des indicateurs d’un défaut de stabilité, lorsque I'amplitude et la vitesse de ces déplacements
sont excessives (Chou et al., 2001), (Chou et al., 2003), (Hahn and Chou, 2003), (Kelly et al., 2008).
Plusieurs auteurs suggérent effectivement que la majoration des déplacements du COM chez les
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patients cérébro-1ésés par rapport a des sujets sains lors de la marche (Tyson, 1999), (De Bujanda et al.,
2004), (Clark et al., 2012), (Detrembleur et al., 2003) et de taches plus instables comme I’enjambement
d’obstacles (Chou et al., 2004) traduit un défaut de stabilité des patients.

Pour quantifier la stabilité des patients, les paramétres des déplacements du COM sont préférés
ala marge de stabilité (et au COM extrapolé) proposée par Hof et al (2005) (Hof et al., 2005). L'approche
proposée par Hof et al considére le corps humain comme un simple pendule inversé, soit une masse
se balancant au-dessus d’un segment rigide unique (Hof et al., 2005). L’influence des mouvements
des différents segments des membres inférieurs et des segments sus-jacents ne sont donc pas pris en
compte dans ce modele simplifié. La détermination du COM par I'approche multisegmentaire décrite
précédemment apparait par conséquent plus proche de la réalité.

Dans la littérature, I'analyse des déplacements du COM lors de la marche en ligne droite se fait
par rapport a la ligne d’avancement du sujet (Chou et al., 2001), (Catena et al., 2007), (Kelly et al.,
2008), (Clark et al., 2012). Le TUG induit des changements de direction du sujet dans I'espace. La
marche est d’abord orientée vers le cone, puis il y a une rotation autour de celui-ci et enfin une marche
orientée vers le sieége, en sens inverse de la premiere phase de marche. La ligne d’avancement des
sujets lors du TUG est définie par la droite passant par les positions du marqueur sacrum a chaqgue
début et fin de cycle avec un repere local mobile (x pour le plan antéro-postérieur, y pour le plan médio-
latéral et z pour le plan vertical).

Les parameétres de déplacements du COM analysés, par rapport a cette ligne d’avancement,
pour évaluer la stabilité des participants lors du TUG étaient I'amplitude et la vitesse des déplacements
du COM a chaque cycle de marche dans le plan vertical et dans le plan médio-latéral.

Le minimum foot clearance (MFC), est I'autre parametre de contrble de la stabilité que nous avons
choisi d’analyser (Hamacher et al., 2011). Ce parametre est ainsi reconnu comme le reflet d’adaptations
pour éviter tout accrochage du pied au sol et trébuchement (Weerdesteyn et al., 2008), (Barrett et al.,
2010). De plus, le MFC nous apparait intéressant a quantifier du fait qu’il représente la résultante de la
cinématique articulaire du membre inférieur. Le calcul du MFC est permis par la mesure de la hauteur
du marqueur orteil a la phase oscillante par rapport a sa hauteur a la phase d’appui, a chaque cycle
de marche. Le milieu de la phase oscillante est choisi pour identifier ce minimum puisque cet instant
correspond a une réduction de la clearance, qui est a I'origine du risque d’accrochage du pied au sol
(Winter, 1992), (Mills and Barrett, 2001), (Menant et al., 2009).

IV.4 Les paramétres de trajectoire

L’étude de la trajectoire locomotrice lors de tdches de navigation nous renseigne sur I'adaptation
des sujets aux contraintes environnementales. L’analyse de la déviation de la trajectoire locomotrice
est relativement récente chez les sujets sains (Courtine and Schieppati, 2003), (Hicheur et al., 2007) et
plus récente chez les sujets présentant une atteinte neurologique (Lamontagne et al., 2010). Certains
auteurs analysent le suivi d’une trajectoire imposée, d’autres analysent la trajectoire spontanée lors
d’une tache de navigation dont seule la cible a atteindre est imposée.
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Nous proposons, dans le cadre de ce travail, le suivi du COM des participants lors du TUG pour
une approche globale de la trajectoire locomotrice spontanée lors de taches de navigation. Deux types
de parametres sont analysés : la longueur de la trajectoire totale (Hicheur et al., 2007) et la déviation de
la trajectoire par rapport a une trajectoire de référence.

Le terme de déviation de la trajectoire est utilisé pour quantifier I’écart de la trajectoire de chaque
participant (patients hémiparétiques et sujets sains) par rapport a une trajectoire de référence. Cette
référence correspond généralement a la moyenne des trajectoires normalisées des sujets sains (Hicheur
et al., 2007). Dans I'objectif de créer cette trajectoire de référence, une analyse préliminaire de nos
mesures a été réalisée a partir des acquisitions des sujets sains. La normalisation temporelle de la
trajectoire du COM a été choisie en tenant compte de la performance chronométrique des patients
hémiparétiques. Nous avons choisi de conserver le plus possible les caractéristiques temporelles et
spatiales de la trajectoire du COM des patients hémiparétiques. Pour cela, la trajectoire du COM a été
suréchantillonnée afin d’obtenir une normalisation temporelle sur 1300 points (équivalent a 13 sec a 100
Hz, performance moyenne des patients hémiparétiques).

Plusieurs approches existent pour quantifier un écart entre deux trajectoires, I'approche spatiale
et 'approche spatio-temporelle. La distance euclidienne entre deux trajectoires est I'approche spatiale
la plus couramment utilisée pour I'étude des trajectoires locomotrices des sujets sains (Courtine and
Schieppati, 2003), (Hicheur et al., 2007). Cette méthode peut étre adaptée lorsque les trajectoires
comparées sont proches d’un point de vue temporel. Cependant, dans le cas de notre étude, les
patients hémiparétiques mettent plus de temps que les sujets sains pour réaliser le TUG. Le choix de
meéthodes permettant de comparer des signaux de longueur différente parait donc plus adapté que
le calcul d’une distance euclidienne entre deux points par pas de temps (Ding et al., 2008), (Etienne,
2011). La distance de Hausdorff (DH) et la déformation temporelle dynamique (Dynamic Time Warping,
DTW) répondent a ce besoin. La DH est une approche spatiale et la DTW est une approche spatio-
temporelle. Ces parametres ont été utilisés pour quantifier la déviation de la trajectoire de chaque
participant par rapport a la trajectoire de référence précédemment définie. Ces parametres ont largement
été utilisés dans différents domaines tels que 'analyse de comportements de marche (Psarrou et al.,
2002), (Laxhammar and Falkman, 2011), le suivi d’objets mobiles (Etienne, 2011) ou la reconnaissance
d’écriture (Di Brina et al., 2008).

DH est largement utilisée dans la reconnaissance de forme notamment dans le traitement de
I'image (Huttenlocher et al., 1993). Elle est aussi proposée pour détecter les événements critiques de
trajectoires locomotrices pour des applications de surveillance (Laxhammar and Falkman, 2011). Pour
chaque point de chaque trajectoire, I'algorithme recherche le point le plus proche de I'autre trajectoire
(distance minimale). DH est la plus grande distance parmi ces distances, elle est donc sensible aux
points excentrés. L'équation correspondant au calcul de DH est la suivante, équation n°1 :

DH (A, B) = max {d(4, B), d(B, A)}

Ou d(A,B) et d(B,A) sont les distances directes euclidiennes entre deux signaux A et B (Laxhammar
and Falkman, 2011).
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La figure 7 illustre la représentation de la DH pour une phase du TUG.

Il Siege

A Cobne a contourner
—— Trajectoire considérée, A
—— Trajectoire de référence, B

d(A,B) distance minimale de A vers B

d(B,A) distance minimale de B vers A

Figure 7 : Représentation de la distance de Hausdorff pour une phase du Timed Up and Go.

DTW permet de mesurer la similarité entre deux séquences évoluant au cours du temps,
indépendamment de la vitesse ou des accélérations/décélérations. Cette méthode a d’abord été
appliquée dans le domaine de la reconnaissance vocale (Sakoe and Chiba, 1978). Ce paramétre a
récemment été utilisé pour identifier le pattern de cheville lors de la marche, enregistré par accélérometre
(Sun and Yuao, 2012). DTW correspond aux distances cumulées qui minimisent le chemin de deux
séries A et B (Berndt and Clifford, 1994) (Fu, 2011). L'équation correspondant au calcul de DTW est la
suivante, équation n°2:

Kk
DTW (A, B) = min [Z d(ai, bik)]

k=1

Ou d(ay,by) est la distance euclidienne entre deux points des séries A et B.

Le principe revient, dans un premier temps, a calculer la distance entre chaque point des ségquences
A et B. Ces distances sont ensuite entrées dans une matrice et I'algorithme cherche un appariement
optimal (codt minime) entre les points des séquences. Un point d’une séquence est associé a un ou
plusieurs points de 'autre séquence. La DTW correspond ainsi au chemin optimal qui apparie les points
des séquences ; sachant que ce chemin est construit selon des contraintes. Les contraintes sont la
monotonie qui consiste en une recherche chronologique (sans revenir en arriere sur I’échelle temps), la
continuité qui consiste en une exploration voisine (sans saut dans la trajectoire), la limite qui considére
toute la séquence de son début a la fin, le fenétrage qui considére qu’un point est forcément dans la
région voisine de I'autre trajectoire et la contrainte de pente qui évite les larges excursions (restriction de
la pente) (Berndt and Clifford, 1994). Le résultat de DTW est sans unité, sachant que les grandes valeurs
correspondent a de grandes déviations entre la trajectoire considérée et la trajectoire de référence. La
figure 8 illustre la représentation de la DTW.
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A
B Sitce
B A Cone a contouner
> Trajectoire considérée, /
B Trajectoire de référence,
Partie A Partie B
A
Partie C Partie D (d'apres Ciaccia P)

Figure 8 : Représentation de la déformation temporelle dynamique (DTW) pour une phase du Timed Up and
Go (Partie A : Matrice de la DTW pour les séquences A et B et chemin optimal en rouge minimisant le colt des
distances; Partie B : Représentation de la DTW lors d'une phase du TUG ; Partie C : Matrice de la DTW pour les
trajectoires A et B lors de la phase considérée du TUG et chemin optimal minimisant le co(t des distances pour cette
phase ; Partie D . exemple graphigue de DTW en 3 dimensions).

DH et DTW ont été calculés pour quantifier la déviation entre la trajectoire considérée et la
trajectoire de référence en considérant la totalité du TUG et en considérant chacune des sous-phases
analysées du TUG. DH et DTW sont complémentaires dans la mesure ou DH permet de déterminer
le point le plus extréme entre la trajectoire du sujet et la trajectoire de référence et, DTW permet de
quantifier la déviation sur la globalité de la phase considérée (et sur la trajectoire totale).

V Limites

L’objectif de ce travail étant de caractériser I'organisation des patients hémiparétiques au
cours de taches de navigation, I'analyse biomécanique du TUG s’est focalisée sur les phases du
test impliquant des déplacements locomoteurs. Ainsi les phases de marche Aller, du Demi-tour et de
marche Retour ont été étudiées alors que les phases de lever et d’assise n’ont pas fait I'objet d’analyse.
Précisons cependant que de nombreuses études ont déja porté sur I’analyse biomécanique des taches
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assis debout et debout assis chez des patients hémiparétiques et des sujets sains alors, qu’a notre
connaissance, aucune n’a propose une telle analyse pour des taches de navigation (Cheng et al., 1998),
(Galli et al., 2008), (Lecours et al., 2008), (Dion et al., 2003), (Frykberg et al., 2009). Néanmoins, cette
absence d’analyse dans nos études pourrait constituer une limite. En effet, nous ne pouvons exclure
une possible influence de la tche de lever sur la réalisation des taches de navigation lui succedant.

Des sources d’erreurs liées a la capture du mouvement par systeme optoélectronique existent.
On distingue les erreurs instrumentales des erreurs expérimentales. Les premieres sont liées aux outils
de mesure utilisés (précision des caméras, performance de 'algorithme de reconstruction 3D). Pour le
systeme Motion Analysis, cette erreur est de I'ordre de 2 a 5mm et de 0.5° lorsque I'on considere le
déplacement de 2 marqueurs sur une baguette rigide (Richards, 1999), (Bonnefoy et al., 2005b). Les
erreurs expérimentales comprennent le placement des marqueurs, le mouvement des tissus mous
comme le glissement de la peau sur les reperes osseux, le mouvement des masses musculaires et
graisseuses, la possible perte de localisation des marqueurs lors du TUG, le découpage des cycles
de marche et des phases du TUG, basé sur une analyse visuelle. Afin de limiter ces sources d’erreur,
le méme matériel a été utilisé et le méme intervenant a mené toutes les expérimentations, en veillant a
conserver la standardisation des passations des TUG. Nous pouvons donc considérer les artéfacts lies
a ces sources d’erreurs comme constants et reproductibles entre les sujets et les conditions analysées.
De plus, les études de reproductibilité de 'analyse de marche évaluée par systeme optoélectronique
montrent une tres grande reproductibilité de la cinématique articulaire dans le plan sagittal avec moins
de 4° d’erreur, parameétres que nous analysons dans nos études (McGinley et al., 2009). Spécifiquement
chez le patient hémiparétique, les coefficients de corrélations intrasession et intersession, compris entre
0.85 et 0.99 pour les parameétres spatio-temporels et la cinématique articulaire dans le plan sagittal,
montrent une tres bonne reproductibilité de ces mesures plagant I’analyse tridimensionnelle de la marche
comme un outil de choix dans la quantification des paramétres biomécaniques (Yavuzer et al., 2008).

Le choix de la table anthropométrique de Dempster peut constituer une limite a partir du moment
ou elle a été établie a partir de données de sujets sains. Cependant, I'impossibilité d’utiliser I'imagerie
meédicale et I'absence de table anthropométrique spécifique aux patients hémiparétiques nous a
conduits au choix de la table établie avec des sujets dont I'age est le plus proche de notre population
étudiée.

Concernant les parametres cinématiques étudiés, notre analyse a ciblé le plan sagittal,
correspondant aux déficits d’amplitude et aux schémas de marche les plus fréquemment décrits chez les
patients hémiparétiques. Cependant, I'absence d’analyse des parameétres de la cinématique articulaire
dans le plan frontal et transversal et, de la cinématique du pelvis peut constituer une limite quant a
I'interprétation de certains de nos résultats. En effet, une possible mise en jeu de ces mouvements lors
de la phase oscillante de marche chez les patients hémiparétiques peut restreindre la compréhension
de I'organisation de ces patients, notamment pour le MFC. De la méme maniére, I'absence de données
cinétiques pourrait constituer une limite dans I'interprétation de I'organisation biomécanique des patients
hémiparétiques mais la tache de navigation ne se prétait pas a leur analyse du fait d’une contrainte de
matériel dans notre laboratoire.
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VI Le bilan clinique

Les patients hémiparétiques ont bénéficié d’'un examen clinique, réalisé par le méme thérapeute,
incluant :

- Une évaluation de la sensibilité (superficielle et profonde) du membre inférieur, au moyen du
Nottingham Sensory Assessment avec un score de O (sensibilité absente) a 2 (sensibilité normale) pour
la sensibilité superficielle et un score de O (sensibilité absente) a 3 (place I'autre membre en miroir a 10°
pres) pour la sensibilité profonde (Lincoln et al., 1991);

- Une évaluation de la spasticité pour les muscles quadriceps, rectus femoris, ischio-jambiers
et triceps sural, au moyen de I'échelle Ashworth modifiée avec un score de O (tonus normal) a 4 (le
segment affecté est fixé en flexion ou en extension) pour chague muscle donné (Bohannon and Smith,
1987). La présence d’une éventuelle griffe d’orteils était également recherchée et consignée;

- Une évaluation de la motricité volontaire pour les fléchisseurs et extenseurs de hanche, genou
et cheville, au moyen de I’échelle Medical Research Council (MRC) scale avec un score entre O (aucune
contraction musculaire décelée) et 5 (force comparable au cdté opposé) pour chaque groupe musculaire
étudié (Held and Pierrot-Desseilligny, 1969);

- L'Index de Barthel évaluant I'indépendance dans les activités de vie quotidienne sur un score de
100 (Mahoney and Barthel, 1965);

- La New Functional Ambulation Classification (NFAC), évaluant I'indépendance a la marche sur
un score de 8 (Brun et al., 2000);

- La Berg Balance Scale (BBS), évaluant les capacités d’équilibre sur un score de 56 (Berg et al.,
1992);

- L’Activities-specific Balance Confidence (ABC) scale, évaluant la confiance qu’a le patient en
son équilibre lors de la réalisation de différentes activités, avec un score entre O (aucune confiance) et
100% (pleine confiance) pour chaque activité étudiée (Powell and Myers, 1995), (Salbach et al., 2006);

- Un interrogatoire relatif aux chutes, a savoir :

- la fréquence des chutes durant les 3 derniers mois précédents I'inclusion (« Combien
de fois étes-vous tombé ces 3 derniers mois ? »),

- les circonstances («Etes-vous tombé en intérieur ou en extérieur ? Dans quelles
circonstances ? Lors du lever d’un siege ? En marchant ? Lors d’'un demi-tour ? Lors
de 'assise sur un siege ? Au cours d’une autre activité ? Laquelle ? Racontez-moi votre
chute»),

- la peur de chuter a estimer entre 0 (pas peur de chuter) et 10 (extrémement peur de
chuter) ;
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Le tableau 5 présente les résultats des principales évaluations cliniques, les détails figurant dans
les annexes 2, 3 et 4.

Tableau 5 : Médianes des scores issus des évaluations de la sensibilité, de la spasticité, de la motricité
volontaire et des tests fonctionnels des patients hémiparétiques.
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Etude 1: Caractérisation de l'organisation des patients hémiparétiques a partir de
parametres cinématiques liés a la performance chronométrique lors des phases de marche
orientée et de demi-tour du TUG.

Le score chronométrique au TUG est largement admis comme un bon indicateur de performance
locomotrice chez les patients hémiparétiques (Podsiadlo and Richardson, 1991), (Flansbjer et al.,
2005), (Ng and Hui-Chan, 2005). Cependant le score chronométrique seul ne nous renseigne pas sur
les mécanismes de réalisation des taches composant le TUG. La compréhension de ces mécanismes
permise par une analyse biomécanique individualisant les taches de navigation du TUG pourrait s’avérer
intéressante cliniguement. En effet, cette analyse pourrait caractériser I'organisation des patients et
constituer un aide a I'orientation thérapeutique. Cette caractérisation serait alors spécifique de la tache
locomotrice : marche orientée vers un but ou contournement d’un obstacle, activités qui refletent des
taches couramment utilisées au quotidien.

L’objectif de cette premiere étude était de déterminer quels parameétres spatio-temporels et
cinématiques étaient le plus liés a la performance chronométrique pour les phases de marche orientées
(Aller et Retour) et de demi-tour du TUG chez des patients hémiparétiques.

Une étude préliminaire évaluant 60 patients hémiparétiques a mis en évidence que, parmi tous les
parametres spatio-temporels et cinématiques obtenus lors d’une analyse de la marche conventionnelle
en ligne droite, le pourcentage de phase de simple appui du coté parétique était le facteur le plus
prédictif et le plus corrélé a la performance globale chronométrique du TUG (Bonnyaud et al., 2015).
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Par ailleurs il est connu qu’une augmentation de la vitesse de marche des patients hémiparétiques
s’associe a une augmentation du pic d’extension de hanche du cété parétique (Lamontagne and Fung,
2004). Pour la présente étude, nous avons donc émis I'hypothése que ces deux paramétres étaient
particulierement liés a la performance chronométrique des taches du TUG.

Vingt-neuf patients hémiparétiques ont effectué des TUG, instrumentés par un systéeme
tridimensionnel d’analyse du mouvement. Deux conditions ont été évaluées, une condition spontanée,
reflétant la vie quotidienne du patient et une condition standardisée, avec un positionnement et des
recommandations spécifiques. Une analyse par régression linéaire multiple pas a pas ascendante a
permis de mettre en évidence, parmi les parametres spatio-temporels et de la cinématique articulaire,
les parametres les plus explicatifs de la performance des patients des phases du TUG.
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Abstract

Background

The timed up and go test (TUG) is a functional test which is increasingly used to evaluate
patients with stroke. The outcome measured is usually global TUG performance-time. As-
sessment of spatiotemporal and kinematic parameters during the Oriented gait and Turn
sub-tasks of the TUG would provide a better understanding of the mechanisms underlying
patients’ performance and therefore may help to guide rehabilitation. The aim of this study
was thus to determine the spatiotemporal and kinematic parameters which were most relat-
ed to the walking and turning sub-tasks of TUG performance in stroke patients.

Methods

29 stroke patients carried out the TUG test which was recorded using an optoelectronic sys-
tem in two conditions: spontaneous and standardized condition (standardized foot position
and instructed to turn towards the paretic side). They also underwent a clinical assessment.
Stepwise regression was used to determine the parameters most related to Oriented gait
and Turn sub-tasks. Relationships between explanatory parameters of Oriented gait and
Turn performance and clinical scales were evaluated using Spearman correlations.

Results

Step length and cadence explained 82% to 95% of the variance for the walking sub-tasks in
both conditions. Percentage single support phase and contralateral swing phase (depend-
ing on the condition) respectively explained 27% and 56% of the variance during the turning
sub-task in the spontaneous and standardized conditions.

PLOS ONE | DOI:10.1371/journal.pone.0129821
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Discussion and Conclusion

Step length, cadence, percentage of paretic single support phase and non-paretic swing
phase, as well as dynamic stability were the main parameters related to TUG performance
and they should be targeted in rehabilitation.

Introduction

Patients with stroke-related hemiparesis frequently have impaired balance and gait, limiting
daily life activities. The improvement of locomotor skills is therefore a major aim of stroke re-
habilitation [1] and an accurate assessment of the patient’s impairments and function is essen-
tial for treatment planning (surgical, pharmacological or physiotherapy-related). The Timed
Up and Go (TUG) test [2] is widely used to assess locomotor capacity in stroke patients [3].
This test measures the time required to rise from a chair, walk 3 meters, turn, walk back and sit
down again, thus evaluating tasks which are regularly encountered in daily life. Although the
TUG is a good general indicator of locomotor function, the timed global performance does not
provide any information regarding the mechanisms underlying the patient’s disabilities and
specific problems relating to each sub-task are not highlighted [4]. Wall et al (2000) thus pro-
posed the Expanded Timed Up and Go test, using video recordings of each sub-task in order to
identify the impairments which reduce the patient’s performance [4]. Similarly, Faria et al
(2013) proposed the TUG-ABS (Assessement of Biomechanical Strategies) in order to aid deci-
sion making. It consists of a 15-item scale of biomechanical strategies for each sub-task of the
TUG [5]. The purpose of both these tests is to identify the mechanisms which reduce patient
performance in each sub-task of the TUG.

Motion analysis would be a pertinent method to investigate biomechanical aspects of the
TUG. The use of instrumental biomechanical tools to assess functional tasks has increased over
the past few years. Galli et al (2008) and Lecours et al (2008) both quantified kinematics and ki-
netics during sit to stand in subjects with stroke and healthy subjects [6, 7]. Dion et al (2003)
and Frykberg et al (2009) assessed a sit to walk task in stroke patients using a 3D optoelectronic
system and force plates [8, 9]. Several studies have evaluated the TUG test using accelerometers
in patients with Parkinson’s disease and healthy subjects [10, 11, 12]. The pertinence of the ac-
celerometers was demonstrated by the fact that the timed TUG performance did not differenti-
ate between the groups but the accelerometer analysis did. Range of motion during sit-to-stand
and stand-to-sit, turning velocity, cadence and trunk rotation velocity were all found to be re-
duced in the patients [10, 11].

Three-dimensional analysis using an optoelectronic system is the current gold standard for
the biomechanical assessment of patients with gait abnormalities [13]. This method is pertinent
for the analysis of spatio-temporal and kinematic parameters of the paretic and non-paretic
lower limbs during each sub-task of the TUG and would increase understanding of the main
mechanisms which underlie performance in stroke patients. Moreover, the results would help
to optimize rehabilitation techniques which aim to improve locomotor capacity.

The aim of this study was thus to determine which spatio-temporal and/or kinematic pa-
rameters would be the most related to performance in Oriented gait and Turn sub-tasks of the
TUG test (time to perform the sub-task) in stroke patients. We hypothesized that the percent-
age of single support phase and peak hip extension on the paretic side would be particularly re-
lated to the performance of Oriented gait and Turn sub-tasks of the TUG. The percentage of
single support phase during gait has been shown to predict the time to perform the entire TUG
test and peak hip extension has been shown to be associated with gait speed [14, 15].

PLOS ONE | DOI:10.1371/journal.pone.0129821  June 19, 2015 2/14
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Methods
Subjects

Twenty nine participants with chronic hemiparesis were included (18 men and 11 women,
mean age 54.2+12.2 years) (Table 1). The inclusion criteria were: age over 18 years, hemiparesis
due to stroke, ability to carry out the TUG test several times without any assistive devices and
medically stable enough for participation in the protocol. Patients were excluded if they had
other neurological, orthopedic or medical disorders that might interfere with the test. All sub-
jects gave written consent before participation. This study was performed in accordance with
the ethical codes of the World Medical Association, was approved by the local ethics committee
(Comité de protection des personnes Ile de France XI, Ref 13005. CNIL, Ref DR-2013-283)
and the individuals have given their written informed consent.

Experimental procedure

TUG test analysis: Data collection and processing. 3D-TUG analysis was carried out
using an optoelectronic motion capture system (sampling frequency 100 Hz, Motion Analysis
Corporation, Santa Rosa, CA, USA). Markers were fixed to specific bony landmarks on both
sides of the body according to the Helen Hayes marker set [16, 17]: the middle-toe, the heel,
the medial and lateral malleoli of the ankle, the shank, the medial and lateral femoral condyles,
the thigh, the anterior superior iliac spines, the tip of the acromion process, the lateral epicon-
dyle of the humerus, the center between the styloid processes of the radius and ulna, the sacrum
and an offset was fixed over the right scapulae. The greater trochanter and the anterior superior
iliac spine were added to improve the reconstruction of the trajectories of joint coordinate sys-
tems. To ensure good reliability, the same person positioned all the markers on all the subjects
[13] and participants all wore the same type of comfortable shoes [18]. Participants were seated
on a stool with their arms held out from the body [19, 9]. They were asked to stand up, walk
3m to a cone, turn around the cone, return to the stool and sit down, at their natural speed
without any walking aids or orthoses. Three trials were recorded for each condition (described
below).

It has been shown that seat height, foot position and turning direction influence the sit to
stand movements and TUG performance in healthy and stroke subjects [20, 21, 22, 23]. Some
studies have attempted to simulate real life conditions during the TUG (standard chair height,
natural starting position) [9, 22] while others have used standardized conditions [8, 21, 22]. In
the present study, Oriented gait and Turn sub-tasks performance were assessed in both the
spontaneous (Spont) and standardized (Stand) conditions. The Spont condition was performed
first [22]. In this condition, subjects sat on a 45cm-high stool to imitate standard chair height
[9], they could position their feet freely and no instruction was given regarding the direction of
the turn. In the standardized condition (Stand), seat height was set to 100% of the distance
from the fibular head to the floor [20], knees were flexed at 100° and feet were placed symmet-
rically [24, 21]. Participants were instructed to look at the cone at the beginning of the task and
to turn towards the paretic side.

Marker trajectories were recorded using 8 infrared cameras and filtered using a low-pass
Butterworth filter with a cut off frequency of 6 Hz [25]. Anatomical frames were defined from
the position of the markers in the reference standing position. This model was used to analyses
the spatio-temporal and kinematic parameters. Open-source Biomechanical Tool Kit package
for MATLAB [26] was used to define the phases of the gait cycle and sub-tasks of the TUG.
The gait phases were defined according to Perry [27] and sub-tasks of the TUG were defined
according to previous studies [9, 28, 29]. Three sub-tasks were analyzed i) ‘Go’ = walk forward

PLOS ONE | DOI:10.1371/journal.pone.0129821 June 19,2015 3/14
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to cone: begins at toe off of the first step and ends with the first foot strike in the direction of
the turn; ii) “Turn’ = walk around the cone: ends at the first foot strike lined up with the stool
[28] and iii) Return = walk back to stool: ends with foot strike of the last step prior to the turn
to sit. The decision not to analyze the two other sub-tasks of the TUG (stand-up and sit down
are discussed in the limits section).

The data were then exported to Matlab (R14, The MathWorks Inc., Natick, MA, USA) for
calculation of the biomechanical parameters in each sub-task.

The parameters analyzed were:

1. Time taken to perform each sub-task, which corresponded to TUG performance.

2. Spatiotemporal parameters: cadence, width, and step length and percentage of single sup-
port phase (%SSP) and swing phase (%SP) for each limb.

3. Kinematic parameters: peak flexion and extension of the hip, knee and ankle on the paretic
and non-paretic sides. For the ankle, maximal dorsiflexion was also calculated during
swing phase.

Clinical evaluation. Spasticity of the whole quadriceps, rectus femoris (one head of the
quadriceps), hamstring and triceps surae was evaluated with the Modified Ashworth Scale
(MAS) [30]. Strength of the hip, knee and ankle flexor and extensor muscles was assessed with
the Medical Research Council (MRC) scale [31]. The scores of the MRC and MAS were
summed. The presence of claw toes was also noted and sensory impairment was assessed with
the Nottingham Sensory Assessment [32]. The Berg Balance Scale (BBS) was used to evaluate
balance capacity [33, 34] and the Activities-specific Balance Confidence (ABC) scale was used
to quantify the level of confidence (from 0 to 100%) to carry out activities without losing bal-
ance [35]. Participants were also asked to report the number of falls within the last 3 months
and to estimate their fear of falling on a visual analog scale between 0 (not afraid) and 10 (ex-
treme fear of falling). The same physiotherapist assessed all the participants.

Statistical analysis

Descriptive statistics including means and standard deviations were calculated for each param-
eter and Oriented gait (Go, Return) and Turn in both conditions (Spont and Stand). To identi-
fy the spatiotemporal and kinematic parameters which were the most related to Oriented gait
(Go and Return) and Turn performance, a stepwise multiple regression analysis with forward
selection was used. The number of variables included in the stepwise analysis has to be small
compared to the number of subjects [36]. Firstly, to select the data entered in the stepwise
model, we performed Pearson’s correlations between all spatiotemporal and kinematic param-
eters and Go, Turn and Return performance (level of significance p<0.05). Spatio-temporal
and kinematic variables which were significantly correlated with TUG performance were then
used for the stepwise analysis. The stepwise multiple regression is particularly reccommended to
assess the association between several independent variables and a single continuous variable.
It selects parameters that best explain the variability of TUG at a significance level of p<0.01
[37, 38]. Multiple linear regression analysis is an extension of simple linear regression used to
assess the association between two or more independent variables and a single continuous vari-
able. The results of a multiple linear regression is expressed by the following equation:

Y =Dbg+ b X+ b Xp+. . ..+ b X, where Y is the explanatory value, X, through X, are p distinct
explanatory variables, by is the value of Y when all the independent variables (X, through X,)
are equal to zero and b, to by, are the estimated regression coefficients. Each regression
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coefficient represents the change in Y relative to a one unit change in the respective
independent variable.

A Spearman’s test was then used to evaluate correlations between variables found to explain
TUG performance from the stepwise analysis and clinical tests since clinical data were not con-
tinuous (level of significance p<0.05).

Results

Results of the Oriented gait (Go and Return) and Turn performance and spatiotemporal and
kinematic parameters for each sub-task and both conditions (Spont and Stand) are presented
in Table 2. Mean (sd) time to perform the task was:

In Spont: 4.83(1.18)s for Go, 2.98 (0.73)s for Turn and 4.23(1.02)s for Return;

In Stand: 4.56(1.01)s for Go, 3.16(0.84)s for Turn and 3.81(0.91)s for Return.

In Spont, sixteen participants turned towards the paretic side, 10 towards the non-paretic
side and 3 changed turn direction within the 3 trials.

Median summed spasticity score was 4+3.6, median summed MRC score was 23+5.7, medi-

an pressure score on the sole of the foot was 1+0.5 and median proprioception score for the toe
was 2#1.1 (both assessed with Nottingham Sensory Assessment). Eighteen subjects had claw
toe in standing. Mean BBS score was 50.5+2.3, mean ABC score was 76.3+12.9. The median
rate of falls was 1+0.7 and median fear of falling score was 2+3.2.

Pearson’s correlation between Oriented gait and Turn performance and
biomechanical parameters

Spont. Go: step length, %SP and %SSP on both sides and cadence and peak hip flexion on
the paretic side were significantly negatively correlated with Go performance.

Turn: paretic step length and %SP and non-paretic %SSP were significantly negatively cor-
related with Turn performance.

Return: step length and %SSP on both limbs, non-paretic %SP and cadence were significant-
ly negatively correlated with Return performance.

Stand. Go: step length, %SP and %SSP on both sides and cadence were significantly nega-
tively correlated with Go performance.

Turn: %SP and %SSP on both sides and paretic step length and paretic peak knee extension
were significantly negatively correlated with Turn performance.

Return: step length, %SP and %SSP on both sides and cadence were significantly negatively
correlated with Return performance.

Stepwise regression

In Spont. Step length on both sides and cadence were selected for Go, explaining 93% of
the variance of Go performance.

Go performance
= 14.98 — 0.05 paretic Step length — 0.05 Cadence — 0.06 non — paretic Step length

For Turn, non-paretic %SSPwas the only variable selected, explaining 27% of the variance
of Turn performance.
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Table 2. TUG performance and spatiotemporal and kinematic parameters for each sub-task and both
conditions (Spont and Stand).

Spont Stand
Go Turn Return Go Turn Return
TUG performance (s) 4.83 2.98 4.23 4.56 3.16 3.81
(1.18) (0.73) (1.02) (1.01) (0.84) (0.91)
Cadence (step/min) 92.27 92.98 91.3 93.48 92.6 92.99
(10.98) (15.36) (10.52) (11.13) (11.82) (10.49)
Width (cm) 16.14 17.63 15.86 17.10 22.33 15.99
(5.19) (6.14) (5.07) (5.38) (4.75) (4.82)
Step length paretic side (cm) 45.51 31.38 42.73 45.29 27.69 43.92
(8.03) (10.09) (7.66) (8.15) (9.82) (7.09)
Step length non paretic side 40.58 27.08 41.34 42.29 31.7 42.69
(cm) (10.23) (11.14) (9.61) (8.9) (9.21) (8.8)
% SSP paretic side (%) 28.09 25.26 28.65 28.45 26.8 29.2
(3.87) (4.99) (3.75) (3.98) (4.3) (3.69)
% SSP non paretic side (%) 39.56 38.39 39.2 39.9 36.52 39.15
(3.71) (3.29) (3.08) (3.36) (4.35) (2.83)
% SP paretic side (%) 39.14 38.19 38.48 39.34 36.53 38.63
(3.49) (3.13) (3.08) (3.28) (4.13) (2.87)
% SP non paretic side (%) 28.54 24.67 28.53 28.65 26.78 29.34
(3.76) (4.93) (3.70) (3.62) (4.3) (3.53)
Peak hip flexion paretic side (°)  41.79 37.63 37.36 40.57 35.93 36.42
(10.27) (9.33) (9.44) (10.59) (9.64) (9.6)
Peak hip flexion non paretic side  47.42 43.09 45.53 47.15 43.77 44.83
©) (8.42) (7.64) (8.15) (8.42) (8.25) (8.13)
Peak hip extension paretic side -2.65 -6.06 -1.57 -2.83 5.47 -1.15
©) (8.58) (9.22) (8.42) (8.54) (9.34) (8.32)
Peak hip extension non paretic 4.32 -0.48 5.03 4.45 3.06 5.63
side (°) (8.23) (8.44) (8.32) (8.77) (8.61) (8.66)
Peak knee flexion paretic side 45.31 41.35 42.93 4413 40.15 44.28
©) (8.7) (9.53) (10.74) (8.58) (8.43) (10.36)
Peak knee flexion non paretic 70.33 66.07 70.27 70.49 69.41 69.93
side (°) (5.25) (8.17) (5.33) (5.03) (5.61) (5.14)
Peak knee extension paretic -2.31 -2.80 -0.64 -2.01 -2.62 -1.14
side (°) (7.2) (7.7) (6.81) (7.07) (7.46) (6.27)
Peak knee extension non -6.22 -7.14 -5.18 -5.75 -5.11 -5.12
paretic side (°) (5.79) (5.06) (5.1) (5.23) (5.14) (5.56)
Peak ankle dorsiflexion swing 1.71 0.89 0.27 1.26 0.18 0.63
phase paretic side (°) (6.92) (6.43) (6.32) (7.28) (8.67) (7.39)
Peak ankle dorsiflexion swing 14.82 17.7 16.02 16.34 13.82 15.05
phase non paretic side (°) (6.36) (9.22) (7.44) (6.17) (6.09) (6.89)
Peak ankle plantarflexion paretic  10.38 7.51 10.08 10.37 9.85 10.82
side (°) (7.88) (7.81) (7.99) (7.79) (9.54) (8.6)
Peak ankle plantarflexion non 9.61(5.4) 7.01 10.22 11.26 9.92 10.73
paretic side (°) (8.19) (6.06) (6.16) (5.61) (6.21)

doi:10.1371/journal.pone.0129821.t002

> Turn performance = 6.8 — 0.08 non - paretic %SSPFor Return, step length on both sides and
cadence were selected, explaining 82% of the variance of Return performance.

Return performance
= 13.7 — 0.05 paretic Step length — 0.05 Cadence — 0.06 non — paretic Step length
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Table 3. Stepwise results for each sub-task and both conditions (Spont and Stand).

Spont
Go Turn Return
Step length paretic side Step length paretic side
step length non paretic side %SSP non paretic side step length non paretic side
cadence cadence

Stand
Go Turn Return
Step length paretic side %SSP paretic side Step length paretic side
step length non paretic side %SP non paretic side step length non paretic side
cadence cadence

%SP non paretic side

doi:10.1371/journal.pone.0129821.t003

In Stand. For Go, step length on both sides and cadence were selected, explaining 95% of
the variance of Go performance.

> (o performance
= 13.38 — 0.06 paretic Step length — 0.04 Cadence — 0.05 non — paretic Step length

For Turn, non-paretic %SPand paretic %SSP were selected, explaining 56% of the variance
of Turn performance.

Turn performance = 5.23 — 0.39 non — paretic %SP + 0.32 paretic %SSP

For Return, non-paretic %SP, cadence and step length on both sides were selected, explain-
ing 87% of the variance of Return performance.

Return performance
=13.1 — 0.09 non — paretic %SP — 0.04 Cadence — 0.04 paretic Step length

Results of the stepwise analysis for both conditions are summarized in Table 3.

Correlation between biomechanical parameters selected and clinical
data

Table 4 presents the results of the correlation between the spatiotemporal and kinematic pa-
rameters selected in the stepwise analysis, and the clinical data.

The BBS score was positively related to most parameters. MRC, fall frequency, fear of falling
and MAS were only related to a few parameters. No correlations were found between the pres-
ence of claw toe, foot sole pressure score, toe proprioception score and ABC score and any
biomechanical parameter.

Discussion

To the best of our knowledge, the present study is the first to use 3D motion analysis to investi-
gate spatiotemporal and kinematic parameters during Oriented gait and Turn sub-tasks of the
TUG test in order to provide a deeper understanding of locomotor control in patients with
stroke. The aim of this study was to determine the spatio-temporal and kinematic parameters
which relate to performance in Oriented gait and Turn sub-tasks of the TUG in stroke patients.
The results showed that in the spontaneous condition, step length on both sides and cadence
best explained Go and Return performance, whereas percentage non-paretic SSP best ex-
plained Turn. In the standardized condition, the same parameters were selected in the stepwise
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Table 4. Correlation between Oriented gait and Turn performance explanatory spatiotemporal and kinematic parameters from the stepwise analy-
sis and the clinical data.

Spasticity Claw MRC  Foot sole Toe BBS ABC Fall Fear of

toe pressure proprioception frequency falling
Step length paretic side Go -0.04 0.03 0.11 0.20 0.06 0.46* 035 0.27 -0.33
Spont
Step length paretic side Return ~ -0.18 -0.15 0.29 0.26 0.15 0.42* 022 0.24 -0.22
Spont
Step length non paretic side Go ~ 0.02 -0.02 0.25 0.17 0.19 0.43* 0.18 0.12 -0.41*
Spont
Step length non paretic side -0.08 -0.02 0.18 0.26 0.27 0.47* 0.13 0.03 -0.44*
Return Spont
Cadence Go Spont 0.27 0.01 -0.09 -0.12 -0.12 -0.04 031 0.32 -0.17
Cadence Return Spont 0.32 -0.07 -0.12  -0.16 -0.11 -0.06 036 0.27 -0.21
% SSP non paretic side Turn 0.21 0.08 0.02 0.07 -0.07 0.04 036 -0.02 -0.08
Spont
Step length paretic side Go -0.11 0.03 0.16 0.16 0.03 0.44* 033 0.27 -0.30
Stand
Step length paretic side Return ~ -0.10 0.10 0.12 0.13 0.05 026 026 0.42* -0.26
Stand
Step length non paretic side Go  0.00 -0.01 0.26 0.18 0.15 0.46* 025 0.14 -0.45%
Stand
Step length non paretic side -0.01 0.03 0.19 0.31 0.27 0.43* 020 0.15 -0.43*
Return Stand
Cadence Go Stand 0.21 -0.07 -0.11  -0.07 -0.08 0.01 030 0.27 -0.15
Cadence Return Stand 0.42* -0.08 -0.14  -0.07 -0.06 -0.04 031 0.24 -0.18
% SSP paretic side Turn Stand  -0.20 -0.27 0.40* 0.1 0.03 0.36 0.22 0.38* -0.40*
%SP non paretic side Turn -0.18 -0.28 0.39* 0.13 0.05 0.40* 0.25 0.43* -0.36
Stand

MRC: Medical Research Council scale. BBS: Berg Balance Scale. ABC: Activities-specific Balance Confidence.
* significant correlation at p<0.05.

doi:10.1371/journal.pone.0129821.t004

analysis for Go and Return, and in addition, percentage non-paretic SP was selected in Turn
and Return and percentage paretic SSP in Turn. Our hypothesis is partly confirmed since the
percentage of single support phase was related to timed Turn performance but peak hip exten-
sion was not.

It is not surprising that step length and cadence explained performance in the walking sub-
tasks since gait speed is the product of step length and cadence. Correlations have previously
been found between total TUG time and gait speed [3]. Improvements in gait speed have also
been shown to be more related to increased step length than other biomechanical variables
after rehabilitation in stroke patients [39]. It is surprising that step width was not related to
Oriented gait performance since this parameter is related to stability in stroke patients [40, 41].
However, increased step width increases the mechanical cost of gait in the frontal plane [42]
which could explain the lack of association with forward progression in the walking sub-tasks
of the TUG. Fear of falling was negatively correlated with step length on the non-paretic side,
but not on the paretic side. Few studies have evaluated the relationship between fear of falling
and step length in stroke. Park et al. showed that fear of falling was related to step cycle while
walking but not to step length in only 12 stroke subjects, which contrasts with the present re-
sults [43]. However, many studies in elderly subjects have also demonstrated a relationship be-
tween fear of falling and decreased step length [44, 45, 46]. This is likely related to the fact that
patients can more easily adapt non-paretic limb motion [47] in order to increase gait stability.
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None of the kinematic parameters studied explained Oriented gait and Turn performance.
This corroborates with a previous study which highlighted that kinematic parameters during
conventional gait analysis were not predictive of the time to perform the entire TUG test [14].
Since increased gait speed is associated with increased hip extension and ankle dorsiflexion in
patients with stroke [15, 48], it could be expected that TUG performance would be related to
these parameters. The lack of association could be because of the short distance involved in the
test. During the Go and Return sub-tasks, participants likely accelerated then decelerated before
beginning the Turn task or the return to sit. So that these kinematic parameters are continuously
adjusted during these sub-tasks and the net result is an absence of modification of the peaks.

Surprisingly, no correlations were found between MRC scores and the biomechanical pa-
rameters which were related to the Go and Return sub-tasks. Previous studies have shown that
the best predictors of gait performance are strength of the paretic lower limb and balance in
stroke patients [49]. Another study in our group showed correlations between time to perform
the entire TUG and strength of the paretic limb [14]. This difference of results could be ex-
plained by the fact that in the present study we made correlation between the sum of the MRC
score of the paretic lower limb and the performance at Oriented gait and Turn sub-tasks
whereas in the previous one we performed distinct correlation between each muscle tested and
the total TUG performance measured with a stopwatch. MAS score was related only to cadence
during Return sub-task in Stand.

Percentage SSP appears to play an important role in the Turn sub-task although the limb
(paretic or non-paretic) differed according to the condition. This corroboratesa previous study
in our group showing that paretic %SSP assessed during conventional gait analysis is predictive
of total TUG performance time in stroke patients [14]. In stroke patients, Ng and Hui-Chan
(2005) found also a correlation between TUG performance and non-paretic stance time, and
DeBujanda et al (2003) found a correlation with single support symmetry [3, 50]. Several stud-
ies have also shown a strong relationship between gait speed and single support time on the pa-
retic limb in stroke patients [51, 52]. Gait speed being related to the time to perform the turn, it
suggests that paretic limb loading and balance control on this limb are challenging during this
sub-task. Moreover, turning requires a change of direction with deceleration of forward mo-
tion, rotation of the body and acceleration in a new direction [53]. It is a complex task for
stroke patients who frequently evoke lacking balance during turning when they are asked
about the circumstances of a fall [54]. Percentage of SSP on the paretic side is known to be
closely linked with stability in stroke patients [51, 52]. Of all the clinical tests, the BBS score
was related to the most biomechanical parameters in all the sub-tasks of the test. The correla-
tion with %SP on the non-paretic side during the Turn in the standardized condition is proba-
bly due to the fact that, when one limb is in SSP the other is in SP,This indicates that the Turn
is a good measure of balance capacity In the spontaneous condition, the participant could turn
either towards the paretic or the non-paretic side which explain the lack of significance of %SP
during the Turn. The MRC score was correlated with the biomechanical parameters which
were related to the Turn. This suggests that more strength is required for this sub-task than for
the walking sub-tasks. The stand-up and sit-down sub-tasks of the TUG may be affected by
lower limb strength but were not assessed in this study.

To summarize, these results indicate that the walking sub-tasks of the TUG test which re-
quire a forward progression of the body are mainly affected by step length and cadence, while
the turning sub-task of the TUG requires balance control which is related to the percentage of
the gait cycle spent in stance phase. However, the percentage variance explained was high for
the Go and Return sub-tasks (between 82% and 95%) and moderate for the Turn (27% and
56%) in both conditions. Both conditions (Spont and Stand) lead to the same explanatory pa-
rameters for walking sub-tasks (step length and cadence). In contrast, the Stand condition
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better explained the variance for the Turn sub-task, we therefore suggest that the standardized
condition is more pertinent for the biomechanical assessment of Oriented gait and Turn sub-
tasks of TUG performance. Confidence in carrying out activities (ABC score) was surprisingly
not related to any of the biomechanical explanatory parameters. Oriented gait and Turn sub-
tasks of TUG test appears thus more related to a global fear of falling than confidence to carry
out specific activities.

Limits

The sample of participants in the present study was a little younger (54.2+12.2 years) than
other studies in the literature. However, it is unlikely that this would have influenced the results
since Oriented gait and Turn sub-tasks of TUG performance was similar to that reported by
Faria et al who found a time of 10.36s for the walking sub-tasks (summed) and 3.18s for the
turning sub-task in patients with chronic stroke (mean age 59.12+2.28y) [29]. Similarly Botolf-
sen et al reported a time of 3.8 to 4.4 seconds for the walking sub-task and 3.8 to 4.2 seconds
for the turning sub-task in older people with impaired mobility [55]. The mean score of BBS in
our population (50.5+2.3) indicates good balance capacity [56], therefore the results of this
study should be only be generalized to similar patients.

The differences found between the Spont and Stand conditions may be due to the fact that
the Spont condition was always performed first. However, for the spontaneous condition to re-
flect spontaneous performance, it was essential for it to be carried out first. A similar methodol-
ogy was used in another study [22].

Conclusion

This study investigated spatiotemporal and kinematic parameters in Oriented gait and Turn
sub-tasks of the TUG test in stroke patients. The results showed that step length and cadence
explained most of the variance in the performance of the walking sub-tasks and, %SSP and %
SP explained the turning sub-task. Balance capacity (assessed with BBS) and fear of falling
were associated with the biomechanical parameters which explained performance in both the
walking and the turning sub-tasks whereas spasticity, strength, sensation and proprioception
were not, or only very slightly, related. It can thus be concluded that dynamic stability is the
main capacity required to perform the walking and turning sub-tasks of the TUG. The results
of the Spont and Stand conditions differed slightly, probably due to the different directions of
the turn. More variance was explained in the standardized condition and therefore we suggest
that this condition should be used to evaluate Oriented gait and Turn sub-tasks of TUG perfor-
mance. This study demonstrated that biomechanical analysis of the Oriented gait and Turn
sub-tasks of the TUG is useful to increase understanding of gait abnormalities. This is relevant
for rehabilitation since the tasks evaluated by the TUG are highly functional and are carried
out frequently throughout the day, however are rarely assessed using accurate tools. This analy-
sis assesses balance capacity during gait, either for monitoring purposes or to evaluate the ef-
fects of treatment (rehabilitation, pharmaceutical or surgical). Moreover, the results of this
assessment can be used to optimize rehabilitation, for example, to improve performance during
the gait sub-tasks, rehabilitation should focus on increasing cadence and step length, whereas
to improve the performance on the turning sub-task, balance capacity and particularly single
support phase on the paretic side should be specifically trained.
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Les résultats de cette étude indiquaient que la longueur de pas et la cadence expliquaient les
taches de marche orientée et que le pourcentage de phase de simple appui du cété parétique (parametre
de stabilité) et de phase oscillante du c6té non-parétique expliquait la tiche du demi-tour. Ces résultats
répondaient partiellement a I'hypothése initiale puisque le pourcentage de phase de simple appui du
coté parétique était bien prédictif du score chronométrique de la phase du demi-tour, en revanche le
pic d’extension de hanche n’expliquait la performance des patients dans aucune des phases du TUG.

Les résultats de cette étude montraient également que les scores au test d’équilibre de la Berg
Balance Scale étaient associés aux parameétres explicatifs des phases de marche et de demi-tour.
Ceci suggere que les capacités d’équilibration constituent une composante pertinente a analyser lors
d’activités locomotrices diverses.

Une standardisation de la condition pour une analyse instrumentée du TUG semble devoir étre
privilégiée pour de futures études ayant pour objet de comparer plusieurs populations. Ainsi, la condition
standardisée (avec positionnement initial et consigne imposés) permettait une meilleure explication de la
variance que la condition spontanée.

Ces premiers résultats d’'une analyse instrumentée du TUG chez des patients hémiparétiques
mettent en évidence I'intérét d’analyser biomécaniquement différentes taches locomotrices, au-dela de
I'analyse de la marche stabilisée en ligne droite sans cible a atteindre. Ainsi, selon la nature de la tache
locomotrice (marche orientée ou demi-tour), le contrdle locomoteur différait pour une méme population.

Toutefois, les résultats de cette étude soulevent de nouvelles questions :

Une méme tache locomotrice est-elle contrblée par les mémes paramétres pour deux populations
différentes ? En d’autres termes, I’'organisation des patients hémiparétiques et des sujets sains est-elle
la méme ?

De quelle maniére les capacités d’équilibration lors d’activités locomotrices variées interféerent-
elles avec la performance lors de la tache ?

La seconde étude a donc eu pour but de comparer les paramétres spatio-temporels et de
la cinématique articulaire lors des taches de marche orientée et de demi-tour du TUG des patients
hémiparétiques avec des sujets sains. La troisieme étude avait pour objectif d’analyser I'équilibre des
patients hémiparétiques lors de la réalisation du TUG et le lien avec la performance.
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Etude 2: Caractérisation de I'organisation des patients hémiparétiques par rapport a des
sujets sains, a partir de paramétres cinématiques lors des phases de marche orientée et de
demi-tour du TUG.

La premiere étude décrit la cinématique locomotrice de sujets hémiparétiques lors des phases
de marche orientée et de demi-tour du Timed Up and Go. Ces parametres, n’ayant jamais été décrits
auparavant, permettent une approche quantifiée de taches locomotrices plus fréquemment effectuées
au quotidien qu’une marche stabilisée en ligne droite. Ces données s’averent intéressantes, mais |l
apparaissait essentiel de les comparer a celles d’une population saine. Ceci dans le but d’évaluer I'écart
a la norme de ces parametres chez les patients hémiparétiques et de déterminer si I'organisation de
ces patients est similaire ou différente de celle des sujets sains. En effet, d’autres études ont mis en
évidence des différences concernant la cinématique de tronc et la coordination temporelle entre des
patients hémiparétiques et des sujets sains au cours de taches quotidiennes telles que le assis debout
(sit to stand) et le lever et marche (sit to walk) (Galli et al., 2008), (Frykberg et al., 2009).

Les objectifs de cette étude étaient (1) de comparer les paramétres spatio-temporels et de
la cinématique articulaire entre des patients hémiparétiques et des sujets sains lors des phases de
marche et de demi-tour du TUG et (2) de déterminer si les paramétres explicatifs de la performance
chronométrique de chacune des phases étudiées différaient entre les patients hémiparétiques et les
sujets sains. Nous avons émis I'’hypothése qu’au cours des phases du TUG, les paramétres spatio-
temporels et de la cinématique articulaire seraient diminués chez les patients hémiparétiques, en se
basant sur la littérature décrivant la marche en ligne droite (Kerrigan et al., 1991), (Olney and Richards,
1996), (Perry, 1992), (von Schroeder et al., 1995) et que les parameétres explicatifs des phases du TUG
différeraient entre les patients hémiparétiques et les sujets sains.

Cette étude comparait vingt-neuf patients hémiparétiques et vingt-cing sujets sains effectuant
le TUG en condition standardisée ; cette condition étant recommandée au regard des résultats de
étude 1.
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Understanding locomotor behavior is important to guide rehabilitation after stroke. This study compared
lower-limb kinematics during the walking and turning sub-tasks of the Timed Up and Go (TUG) test in
stroke patients and healthy subjects. We also determined the parameters which explain TUG sub-task
performance time in healthy subjects. Biomechanical parameters were recorded during the TUG in
standardized conditions in 25 healthy individuals and 29 patients with chronic stroke using a 3D motion-
analysis system. Parameters were compared between groups and a stepwise regression was used to
indicate parameters which explained performance time in the healthy subjects. The percentage
difference in step length between the last and first steps was calculated, during walking sub-tasks for
each group.

Speed, cadence, step length, percentage paretic single support phase, percentage non-paretic swing
phase, peak hip extension, knee flexion and ankle dorsiflexion were significantly reduced in the Stroke
group compared to the Healthy group (p < 0.05). In the Healthy group, step length and cadence explained
91% of variance for Go and 86% for Return (walking sub-tasks), and none of the parameters explained the
Turn. Previous study in patients with stroke showed that the same parameters explained the variance
during the walking sub-tasks and balance-related parameters explained the Turn. The present results
showed that step length was differently modulated in each group. Thus the locomotor behavior of
patients with stroke during obstacle circumvention is quite specific in light of the results obtained in
healthy subjects.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

stepping onto an obstacle [5], changing step-width [2] and
reducing gait speed during obstacle circumvention [3].

The gold standard technique for gait analysis in stroke patients
involves recording straight-line gait using a three dimension
motion analysis system [ 1]. This does not reflect locomotion during
daily life. Previous studies of gait have shown that different motor
strategies are used by healthy subjects, depending on the
environment [2,3]. These include altering gait speed without
altering course to avoid collision [4], modifying step length prior to

* Corresponding author at: Laboratoire d’analyse du mouvement Inserm 1179,
Hopital Raymond Poincaré, 104 Bld Raymond Poincaré, 92380 Garches, France.
E-mail address: celine.bonnyaud@rpc.aphp.fr (C. Bonnyaud).

http://dx.doi.org/10.1016/j.gaitpost.2016.06.023
0966-6362/© 2016 Elsevier B.V. All rights reserved.

The Timed Up and Go test (TUG) is a clinical test of functional
gait routinely used to assess locomotion in stroke patients [6,7].
TUG performance is slower following stroke [7,8], however, little is
known regarding the motor strategies used by patients. Bio-
mechanical analysis of each sub-task has thus been recommended
[9,10]. A recent study determined the spatiotemporal and
kinematic parameters that were most related to the walking
and turning sub-tasks of TUG performance in patients with stroke
[11]. However, this study did not include healthy control subjects.
Other studies have shown that trunk and ankle kinematics, vertical
kinetics and temporal coordination are altered during sit to stand
and sit to walk tasks following stroke [12-14]. A difference in the
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head anticipation distance (the distance between the real turn
point and the point where the head started to turn) during turning
in the TUG has also been found between stroke and healthy
subjects [15]. However, data are lacking regarding locomotor
adjustments during oriented gait and obstacle circumvention in
patients with stroke compared with healthy subjects. This is
important because sensory-motor function following stroke alters
the biomechanics of gait [16-18]. Moreover such information
would guide rehabilitation to improve the quality of gait.

The first aim of this study was to compare spatio-temporal and
kinematic parameters during the walking and turning sub-tasks of
the TUG between patients with stroke and healthy subjects. We
hypothesized that gait parameters during the TUG would be lower
in patients with stroke compared to healthy subjects since it is
known that spatio-temporal and kinematic parameters are
reduced in straight-line gait following stroke [19-22]. The second
aim of this study was to determine the parameters which explain
TUG sub-task performance time in healthy subjects. We hypothe-
sized that step length and cadence would be particularly related to
the performance time since they are related to the speed.

2. Method
2.1. Subjects

Twenty nine patients with chronic stroke-related hemiparesis
followed in our rehabilitation unit (mean age 54.2 4 12.2 years),
and twenty five age-matched healthy subjects (mean age
51.6 + 8.7 years) were included in this study. Calculation of the
effect size and the statistical power (95%) using previously
published data [7,8] showed that the sample size was sufficient
to support our results [23]. To be included, patients had to have had
a single stroke, be over 18 years old and able to perform several
TUG tests without assistive devices. The healthy subjects had no
history of neurological or orthopedic disorders. Patients were
excluded if they were medically unstable or if they had other
neurological or orthopedic disorders that might interfere with test
performance. Subject characteristics are shown in Table 1. This
study was conducted in accordance with the ethical codes of the
World Medical Association. All subjects provided written informed
consent. The local ethics committee approved this study.

2.2. Clinical assessment

Patients with stroke underwent a clinical examination which
included sensation and proprioception using the Nottingham
Sensory Assessment, spasticity (quadriceps, rectus femoris,
hamstring and triceps surae muscles) using the Modified Ashworth
Scale and strength (hip, knee and ankle flexor and extensor
muscles) using the Medical Research Council scale.

2.3. Experimental procedure
Each subject performed 3 trials of the TUG test in standardized
conditions, previously published [11]. Participants were asked to

stand up, walk 3 m, turn around a cone, return to the stool and sit

Table 1
Subject characteristics.

down. Patients with stroke were instructed to turn towards their
paretic side and healthy subjects towards their non-dominant side
since the direction influences performance [24,11]. A previous
study showed that standardized conditions reduce variability and
allow easier interpretation of results [ 12]. No instruction was given
concerning the side of the first step. The test was carried out at the
subject’s self-selected speed without orthoses or walking aids.

A motion analysis system with 8 optoelectronic cameras
(Motion Analysis Corporation, Santa Rosa, CA, USA, sampling
frequency 100Hz) recorded the displacement of thirty-four
reflective markers positioned on anatomical land marks according
to the Helen Hayes protocol, as well as on the greater trochanter
and the anterior superior iliac spine [25,26,11]. The signal was
filtered using a low-pass Butterworth filter with a cut-off
frequency of 6Hz [27]. Anatomical frames defined from the
reference standing position were used for the analysis of spatio-
temporal and kinematic parameters. A MOtion Kinematics and
Kinetics Analyser (MOKKA, Biomechanical ToolKit) was used to
define the phases of the gait cycle (according to Perry [19]) and
TUG tasks [28]. The three sub-tasks of the TUG were defined as in
Bonnyaud et al. [11]: “Go” (first walking phase from the stool to the
cone), “Turn” and “Return” (second walking phase back towards
the stool). The same experimenter carried out all the analyses to
ensure reliability [1].

The same parameters as in Bonnyaud et al. [11] were analyzed
with Matlab (R14, The MathWorks Inc., Natick, MA, USA): (i) TUG
sub-task performance defined by the time taken to perform each
sub-task (Go, Turn and Return), (ii) spatiotemporal parameters:
cadence, width, step length and percentage of single support phase
(%SSP) and swing phase (%SP) for each limb, during the three sub-
tasks, and (iii) kinematic parameters: peak flexion and extension of
the hip, knee and ankle and maximal ankle dorsiflexion during
swing phase, for each limb, during the three sub-tasks.

Our previous study showed that step length was the main
parameter which explained performance during the walking sub-
tasks preceding turn of the TUG in the Stroke group [11].
Modulation of step length provides an indication of how subjects
prepare for a turn. It has been shown that reducing step length is a
way to maintain stability [29]. We thus analysed the modulation of
step-length during Go and the Return in both groups by calculating
the percentage difference in length between the last and first steps,
for each side, as follows:

Percentage difference step length
__last step length — first step length

first step length x 100

2.4. Statistical analysis

We calculated the means and standard deviations of each
parameter, for each subject during each sub-task. Data were
normally distributed (Shapiro Wilk test). Independent t-tests were
used to compare parameters between the Stroke and Healthy
groups (the paretic limb of patients was compared with the weaker
limb of healthy subjects and the non-paretic limb of patients was
compared with the stronger limb of healthy subjects). Effect sizes

Age (years) Height (m) Weight (kg) Gender (m/w) Time since stroke (years) Hemiparetic side
Stroke group 542+12.2 1.68 +£0.09 73.2+16.2 18m/11w 79+5.7 12 right/17 left
(n=29)
Healthy group 51.6+8.7 1.67+0.1 65.6 +14.7 11m/14w - -
(n=25)

There were no differences in characteristics between groups (Student, p>0.05). M: men; w: women.
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were calculated as the difference between the means of the stroke
and healthy groups, divided by the mean standard deviation [30].
Pearson’s correlations were carried out between biomechanical
parameters and TUG performance for the corresponding sub-task
(level of significance p <0.05). The strength of the correlations
were analysed according to Domholdt (strong: >0.70, moderately:
[0.50-0.69], and weak: <0.49) [33]. Then, the biomechanical
parameters which were significantly correlated were used in a
stepwise multiple regression analysis with forward selection for
each sub-task, since the number of variables included in the model
has to be small [31]. The stepwise regression was performed using
data from the Healthy group to select the parameters which best
explained TUG performance time for each sub-task. To avoid
redundant variables, if the same parameter was significantly
correlated with performance time in both lower limbs, we
compared the limbs. If there was no difference, the mean of the
limbs was entered in the regression model [32]. Similarly, gait
speed was not considered for regressions since it appears
redundant with cadence and step length. Finally, independent t-
tests were used to compare the percentage difference in step
length between patients and healthy subjects on both sides
(p<0.05).

3. Results
3.1. Comparison of the stroke and healthy groups

Spasticity and strength scores of patients are presented in
Table 2. No patients had a complete loss of sensation, 52% had
hypoesthesia and 48% had normal sensation, 17% had complete loss
of proprioception, 38% had some loss of proprioception and 45%
had normal proprioception.

TUG performance time and biomechanical parameters are
shown in Table 3. Performance time of the Stroke group was
significantly longer for each sub-task (p <0.05). Several param-
eters were consistently altered in all sub-tasks in this group.
Compared to the Healthy group, the values for speed, cadence, step
length on both sides, percentage paretic single support phase and
percentage non-paretic swing phase were reduced in the Stroke
group for all sub-tasks (p <0.05). Similarly, peak hip extension,
knee flexion and ankle dorsiflexion were lower in the paretic limbs
of the Stroke group for all sub-tasks (p < 0.05). No differences were
found for peak knee extension and ankle plantarflexion on paretic
side (p>0.05). On non-paretic limbs, peak knee flexion of the
Stroke group was higher and peak knee extension was lower, for all
sub-tasks (p < 0.05). No differences were found for peak hip flexion
on non-paretic side (p>0.05).

Other parameters were differently altered in the Stroke group in
comparison with Healthy group depending on the sub-task. This

was the case during Turn where step width was smaller (larger
during both walking sub-tasks), % paretic SP and % non-paretic SSP
were smaller, peak hip extension and ankle plantarflexion on the
non-paretic side were higher and peak ankle dorsiflexion on the
non-paretic side was lower in the Stroke group, in comparison with
Healthy group (p < 0.05). These parameters did not differ from the
Healthy group during Go or Return (except peak paretic ankle
dorsiflexion). Specific modifications concerned the Go sub-task
such as peak paretic hip flexion which was lower and peak non-
paretic ankle dorsiflexion which was higher in the Stroke group
(p>0.05); peak paretic hip flexion was not different during Turn or
Return (p>0.05).

The effect sizes of all the significant between-group compar-
isons were large (>0.8) except for peak hip flexion on the paretic
side (medium effect size) and peak knee flexion, peak ankle
dorsiflexion (medium effect size) and plantarflexion (small effect
size) on the non-paretic side [30].

3.2. Parameters which explained performance time in healthy subjects

Significant correlations between biomechanical parameters
and TUG performance during Go, Turn and Return of Healthy group
are presented in Table 3. The results showed that cadence, step
length, %SP and %SSP were significantly strongly or moderately
correlated (p < 0.05) with performance time, for both lower limbs
for the walking sub-tasks with no significant differences between
sides (p>0.05). The means of these parameters were thus entered
in the regression model. Some kinematic parameters were weakly
correlated during these walking sub-tasks. No parameters were
correlated during the Turn.

The parameters selected by the stepwise regression to explain
performance time for the Go sub-task in the healthy subjects were
step length and cadence (91% of the variance). The corresponding
regression equation was: TUG performance time Go Healthy =6.61
-0.03 Step length — 0.02 Cadence. For Turn, no variables were
correlated with TUG performance time. For Return, step length and
cadence explained 86% of the variance. The corresponding
regression equation was: TUG performance time Go Healthy =9.24
-0.06 Step length —0.03 Cadence.

3.3. Analysis of the percentage difference in step length

The percentage differences in step length between the last and
first steps of Go and Return in the Stroke and Healthy groups are
presented in Fig. 1.

For Go, the mean difference was —3.5% in the right limb and
—7.8% in the left limb of the Healthy group and, —14.5% in the
paretic limb and +12.5% in the non-paretic limb of the Stroke
group. For Return, the mean difference was —6.3% in the right limb

Table 2

Number of patients with stroke as a function of spasticity and strength scores.
Score 0 1 1+ 2 3 4 5 Total number of patients with spasticity or weakness for each muscle
Muscle
Spasticity Q 11 8 1 5 4 0 - 18
Spasticity H 24 4 0 1 0 0 - 5
Spasticity TS 14 5 0 8 2 0 - 15
Claw toe 11 18 - - - - - 18
MRC hip flexors 0 0 - 0 4 22 3 26
MRC hip extensors 0 0 - 9 5 15 0 29
MRC knee flexors 0 1 - 5 13 10 0 29
MRC knee extensors 0 0 - 0 0 10 19 10
MRC ankle dorsiflexors 3 1 - 0 9 14 2 27
MRC ankle plantarflexors 4 8 - 12 2 1 2 27

Qquadriceps, H hamstring TS triceps surae. Spasticity was assessed with the modified Ashworth scale (0-4). Strength was assessed with Medical Research Council (MRC) scale

(0-5). The total number of patients was 29.
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Table 3
Spatiotemporal and kinematic parameters (Mean(sd)) during the Go, Turn and Return sub-tasks of the TUG for both groups.
Go Turn Return
Stroke group  Healthy group d Stroke group  Healthy group d Stroke group  Healthy group d
Performance TUG (time in sec) 4.6 (1.0) 24 (0.3) 29 3.2(0.8) 14 (0.2)* 3 3.8 (0.9) 2.3 (04) 21
% SP side 1 (%) 39.3(3.3) 39.1 (1.7)° - 365(41) 40.3 (2.5) 11 38.6(2.9) 38.6 (2.2)° -
=-0.63 =-0.71
% SP side 2 (%) 28.6 (3.6) 38.5(1.4)*P 3.6 26.8(45) 36.7 (2.0)? 28 293 (3.5) 38.1 (2.0)*° 3
r=-0.52 r=-0.50
% SSP side 1 (%) 284 (3.9) 39.2 (1.7 36 26.8(4.3) 36.2 (2.7) 26 292(3.7) 38.5 (1.9)*" 31
r=-0.67 r=-0.63
% SSP side 2 (%) 39.9 (3.36) 39.1 (1.7)° - 365(43) 39.9 (2.4)* 09 39.1(2.8) 38.4(1.9) -
r=-0.78
Step length side 1 (cm) 453 (8.1) 64.0 (6.2)*° 26 27.7(9.8) 42.8 (6.3) 18 439 (7.1) 61.4 (5.3)*° 2.8
r=-0.77 r=-0.66
Step length side 2 (cm) 423 (8.9) 63.9 (7.4)*° 26 31.7(9.2) 42.7 (9.7) 11 42.7(88) 59.3 (7.4)*" 2
r=-0.77 r=-0.72
Width (cm) 17.1 (5.4) 11.2 (31)* 13 223(4.7) 33.0 (6.5)° 19 159 (4.8) 10.2 (2.9)* 14
Speed (s) 41.0 (8.5) 72.3 (8.5) 3.7 285 (64) 45.7 (9.0) 22 402 (73) 65.8 (7.6) 34
Cadence (pas/min) 93.5 (11.1) 109.7 (7.9)*° 17 926 (11.8) 105.7 (8.0)? 13 929(10.5) 106.9 (8.3)*" 1.5
r=-0.56 r=-0.57
Peak hip flexion side 1 (°) 40.6 (10.6) 471 (10.7)*° 0.6 359(9.6) 37.9 (6.9) - 36.4 (9.6) 39.3 (6.0) -
r=-0.46
Peak hip flexion side 2 (°) 471 (8.4) 51.3 (10.6)° - 438(82) 43.0 (6.18) - 448(81) 413 (5.9) -
r=-0.48
Peak hip extension side 1 (°) -2.8(8.5) 5.6 (6.4)* 11 -55(9.3) 1.5 (5.8)* 09 -11(8.3) 6.1 (6.3)* 0.9
Peak hip extension side 2 (°) 4.4 (8.8) 4.9 (7.3) - 3.0 (8.6) -2.6 (8.7)* 0.6 5.6(8.6) 4.6 (7.5) -
Peak knee flexion side 1 (°) 441 (8.6) 66.5 (3.6)* 3.3 401 (84) 679 (3.8)* 43 443 (10.3) 65.5 (3.7)*° 2.7
r=-0.44
Peak knee flexion side 2 (°) 70.5 (5.0) 68.0 (3.3)° 06 69.4 (5.6) 66.5 (4.3)° 06 69.9(5.1) 66.4 (2.9) 0.8
Peak knee extension side 1 (°) -2.0(71) 0.9 (34) - —2.6 (74) 0.4 (3.6) - -1.1(6.3) 1.2 (3.0) -
Peak knee extension side 2 (°) -5.7(5.2) 09 (3.7 15 -51(5.1) -0.7 (3.7)* 09 -51(5.5) 0.9 (3.3 13
Peak ankle dorsiflexion swing phase side 1 (°) 1.3 (7.3) 6.9 (2.5)*° 1 0.2 (8.7) 7.3 (2.8)* 11 0.6 (74) 5.9 (2.8)* 0.9
=-043
Peak ankle dorsiflexion swing phase side 2 (°) 16.3 (6.2) 111 (7.2)° 0.7 13.8(6.1) 17.8 (7.7 0.6 15.0(6.9) 134 (7.7) -
Peak ankle plantarflexion side 1 (°) 10.34 (7.8) 12.4 (6.5) - 9.8 (9.5) 11.3 (6.5) - 10.8 (8.6) 123 (5.5)° -
r=-0.49
Peak ankle plantarflexion side 2 (°) 11.2 (6.1) 9.8 (7.1) - 9.9 (5.6) 6.1 (6.2)* 0.2 10.7 (6.2) 124 (71) -

%SSP: percentage of single support phase.
%SP: percentage of swing phase.

Sign—means a reduction in the range of active motion (flexion or extension, depending on the parameter).
Side 1 corresponds to the paretic side for hemiparetic patients and to the right side for healthy subjects.

d Cohen’s effect size.

Significant difference between the hemiparetic patients and healthy subjects (p < 0.05).
bSignificant correlation (all negative; p < 0.05) between the variable and TUG performance (time) for the sub-task concerned in healthy subjects, assessed with Pearson

correlation.

and —16.8% in the left limb in the Healthy group and, —23.7% in the
paretic limb and +2.3% in the non-paretic limb of the Stroke group.
These differences were significant between groups (p < 0.05).

4. Discussion

4.1. Biomechanical parameters: comparison between patients with
stroke and healthy subjects

As hypothesized, speed, cadence, step length on both sides,
percentage of single support phase on the paretic side, peak hip
extension, knee flexion and ankle dorsiflexion on the paretic side
were significantly reduced in the Stroke group (compared to the
Healthy group) for all three TUG sub-tasks. This is not surprising
since most of these parameters depend on gait speed which was
reduced [34,35]. The loss of peak paretic knee flexion likely relates
to hip flexor weakness, quadriceps spasticity and reduced
propulsion due to plantarflexor weakness [21]. The loss of peak
paretic ankle dorsiflexion is likely due to dorsiflexor weakness and/
or triceps surae spasticity [36] and the loss of peak hip extension to
spasticity of the hip flexors. These findings corroborate with
previous studies of straight-line gait [20-22].

Interestingly, peak knee flexion during the three sub-tasks, and
peak hip extension and peak ankle plantarflexion during the Turn,
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were greater in the non-paretic side of the Stroke group than in the
Healthy group. These may be adaptations to compensate for
deficits on the paretic side. Hutin et al. found greater non-paretic
hip and knee flexion in stroke patients compared to healthy
subjects during straight-line gait at the same speed [37]. This
suggests that some kinematic adaptations in the non-paretic
lower-limb are task-independent. The greater values on the non-
paretic side could also be due to the fact that the non-paretic limb
was outside during the Turn and thus covered a greater distance
than the inside limb. However the parameters of the outside limb
of the patients with stroke were greater than the outside limb of
healthy subjects. Increasing non-paretic peak hip extension and
peak ankle plantarflexion specifically during the Turn may be a
strategy to help patients with stroke to optimize their perfor-
mance.

Some kinematic adaptations were specific to the stroke group,
particularly during the Turn. Percentage paretic SP, percentage
non-paretic SSP and step width were only decreased during the
Turn in the Stroke group. The decreased percentage paretic SP is
likely due to the complexity of turning. Similarly, the steps of the
Stroke group were shorter and narrower during the Turn, probably
out of caution. However, step width during the Turn should be
interpreted with caution since turning induces a change of
direction which may confound its interpretation.
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Fig. 1. Percentage difference in step length between the last and first steps for the
Go and Return sub-tasks of the TUG in stroke patients and healthy subjects.

4.2. Parameters which explained performance time

We compared the results of the stepwise regression for the
Healthy group with our previous results in the Stroke group [11].
During the walking sub-tasks (Go and Return), similar parameters
(step length and cadence, and % non-paretic SP for the Stroke group
during Return), explained performance in both groups, thus
refuting our second hypothesis. It is interesting to note that no
kinematic parameters explained performance time during the
walking sub-tasks in either group although several kinematic
parameters were altered in the stroke patients compared to the
healthy subjects. These results suggest that the modulation of step
length is the result of multi-level lower-limb adaptations in both
groups. Adaptations of step length reflect locomotor behavior
before a turn. Step length in the Healthy group decreased before
the turns (Turn sub-task and turning prior to sitting down), as it did
on the paretic side in the Stroke group (to a greater extent than in
the Healthy group), demonstrating anticipation. In contrast, step
length on the non-paretic side increased, possibly because of the
direction of the turn. This parameter highlighted specific behaviors
in individual patients. For example, two patients had a perfor-
mance time of 4.4 s, one of whom decreased his percentage step
length six times more than the other. Sensory-motor deficits in
stroke patients and the direction of turn towards the paretic side
could explain the different modulation in the paretic and non-
paretic side. Caution must be taken in the interpretation of this
parameter since the accelerations and decelerations involved in
the TUG, as well as differences in the side which initiated gait,
induce variability.

Different parameters explained performance time during the
Turn in each group. Our previous results in the Stroke group

showed that 56% of the variance in TUG performance time during
Turn was explained by percentage paretic single support phase and
percentage non-paretic swing phase, which are balance related
parameters [11,38,39]. Conversely, no variables were correlated
with Turn performance in the Healthy group although several
spatio-temporal and kinematic parameters were modified, sug-
gesting that control of the turn is based on simultaneous multi-
level spatio-temporal and kinematic changes. Control of this
complex sub-task was thus differently modulated between the
groups. This complements the study by Hollands et al. who found a
longer turn duration during the TUG for the patients with stroke,
with a difference in the head anticipation distance but no
differences in axial coordination between groups [15]. Obstacle
circumvention during gait is complex, requiring the perception and
integration of sensory inputs to adapt gait appropriately [40].
Patients with stroke have difficulty taking into account sensory
information and generating appropriate feedback for compensa-
tory adjustments [41]. This could explain the difference in
controlled parameters between Stroke and Healthy groups during
the turn.

The patients included had a relatively good level of recovery
since they could perform the TUG test without walking aids or
orthoses. The results are therefore applicable only to similar
patients.

5. Conclusion

This study is the first to compare biomechanical parameters
during the TUG between patients with stroke and healthy subjects.
The values of most biomechanical parameters were reduced in the
patients with stroke compared to the healthy subjects, although
the values of some parameters on the non-paretic side were
increased in compensation. This study also determined the
parameters that best explained performance time of TUG sub-
tasks in healthy subjects. Performance time of the walking sub-
tasks was explained by step length and cadence in Healthy group,
which is similar to previous reports in patients with stroke.
However, they were differently modulated, probably because of
the sensory-motor deficits of the patients with stroke. No
parameter was specifically related to Turn performance time in
the Healthy group, suggesting that control of the turn is based on
simultaneous multi-level changes, which contrast with the
balance-related parameters, previously found to explain Turn
performance time in the Stroke group. This study suggests that
balance rehabilitation is particularly important for stroke patients
to improve stability and performance during locomotor tasks
involving turns.
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La diminution de la plupart des parametres cinématiques au cours des phases du TUG chez
les patients hémiparétiques par rapport aux sujets sains confirmait notre hypothése. Les résultats
mettaient également en évidence une supériorité de certains parametres du cdté non-parétique par
rapport a ceux de sujets sains suggérant une possible compensation des déficits du cbté parétique.
Par ailleurs certains paramétres, relatifs a la stabilité, étaient spécifiquement modulés chez les patients
hémiparétiques au cours de la phase du demi-tour, comparativement aux autres phases locomotrices
du TUG.

Notre seconde hypothése était partiellement validée avec des paramétres explicatifs de la
performance similaires, mais modulés differemment, chez les patients hémiparétiques et les sujets
sains pour les phases de marche orientée (la longueur du pas et la cadence). En revanche, pour la
phase du demi-tour, ces parametres différaient entre les populations avec des paramétres relatifs a
la stabilité pour les patients hémiparétiques et aucun parametre explicatif pour les sujets sains. Ces
résultats suggéraient une organisation différente et spécifique pour certaines phases du TUG et ont
permis d’émettre I'hypothese de 'existence d’une stratégie différente utilisée par les patients lors de la
réalisation de ces tdches de navigation.

Ces résultats confirment I’'hypothése émise au décours de la premiere étude suggérant que les
capacités d’équilibration des patients hémiparétiques lors d’activités locomotrices variées interferent
avec la performance lors de la tache. Ces éléments nous ont conduits a étudier spécifiquement des
parameétres de stabilité au cours des phases locomotrices du TUG.
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Etude 3 : Caractérisation de I'organisation des patients hémiparétiques par rapport a des
sujets sains, a partir de I’'analyse de leurs déplacements du COM et du MFC, lors des phases de
marche orientée et de demi-tour du TUG.

Les résultats des études 1 et 2 mettaient en évidence I'intérét d’étudier les parametres de stabilité
chez les patients hémiparétiques lors de la réalisation du TUG. De plus, la littérature souligne I'implication
des troubles de I’équilibre au cours des déplacements locomoteurs comme facteur explicatif des chutes
des patients hémiparétiques (Nyberg and Gustafson, 1995), (Forster and Young, 1995), (Hyndman et
al., 2002), (Belgen et al., 2006). Or les évaluations cliniques telles que la vitesse de marche, le score
a la Berg Balance Scale (gold standard de I'évaluation de I'équilibre) et la performance au TUG ne
permettent d’expliquer les chutes chez les patients hémiparétiques (Harris et al., 2005), (Persson et al.,
2011), (Barry et al., 2014). Il apparaissait donc indispensable d’évaluer les capacités d’équilibration des
sujets hémiparétiques au cours d’activités locomotrices variées, rencontrées au quotidien, comme la
marche orientée vers un but et le contournement d’un obstacle. Le contréle du COM et du MFC sont
admis comme le reflet du contrble de la stabilité dynamique au cours du mouvement et du risque de
trébuchement lors de la locomotion (Winter, 1991), (Tucker et al., 1998), (Barrett et al., 2010), (Hamacher
etal, 2011).

Les objectifs de cette étude étaient (1) d’analyser la stabilité au cours des phases de marche
orientée et de demi-tour du TUG en étudiant les déplacements verticaux et médio-latéraux du COM
et le MFC des patients hémiparétiques et de les comparer a ceux des sujets sains ; (2) d’évaluer
les relations entre les parameétres du COM et le MFC et, la performance chronométrique des
phases correspondantes ; et (3) de comparer les paramétres du COM et le MFC entre les patients
hémiparétiques chuteurs et non-chuteurs. Nous avons émis les hypothéses que les déplacements
du COM et le MFC seraient plus importants chez les patients hémiparétiques que chez les sujets
sains et que ces parameétres seraient positivement corrélés a la performance chronomeétrique. Nous
avons également émis I’hypothese que les déplacements du COM seraient plus importants et le MFC
serait réduit chez les patients hémiparétiques chuteurs, en comparaison aux non-chuteurs. Vingt-neuf
patients hémiparétiques et vingt-cing sujets sains effectuant le TUG en condition standardisée ont été
analysés.
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Abstract

Background

The Timed Up and Go (TUG) test is often used to estimate risk of falls. Foot clearance and
displacement of the center of mass (COM), which are related to risk of tripping and dynamic
stability have never been evaluated during the TUG. Accurate assessment of these param-
eters using instrumented measurements would provide a comprehensive assessment of
risk of falls in hemiparetic patients. The aims of this study were to analyze correlations
between TUG performance time and displacement of the COM and foot clearance in
patients with stroke-related hemiparesis and healthy subjects during the walking and turn-
ing sub-tasks of the TUG and to compare these parameters between fallers and non-fallers.

Methods

29 hemiparetic patients and 25 healthy subjects underwent three-dimensional gait analysis
during the TUG test. COM and foot clearance were analyzed during the walking and turning
sub-tasks of the TUG.

Results

Lateral displacement of the COM was greater and faster during the walking sub-tasks and
vertical displacement of the COM was greater during the turn in the patients compared to
the healthy subjects (respectively p<0.01 and p<0.05). Paretic foot clearance was greater
during walking and displacement of the COM was slower during the turn in the patients
(p<0.01). COM displacement and velocity during the turn were correlated with TUG perfor-
mance in the patients, however, vertical COM displacement was not. These correlations
were significant in the healthy subjects. There were no differences between COM parame-
ters or foot clearance in fallers and non-fallers.
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Discussion and Conclusion

Hemiparetic patients are less stable than healthy subjects, but compensate with a cautious
gait to avoid tripping. Instrumented analysis of the TUG test appears relevant for the
assessment of dynamic stability in hemiparetic patients, providing more information than
straight-line gait.

Introduction

Stroke related impairments such as sensorimotor dysfunction affect balance and gait, increas-
ing the risk of falls. Falls are costly to the health system and are therefore an issue of public
health [1],[2]. Two thirds of falls reported by stroke patients living at home occur during gait-
related activities [1],[3]. Direction changes and turns are particularly hazardous [1],[4]. The
majority of patients relate falls to intrinsic factors such as impaired balance and foot dragging
[4],[2]. Dynamic stability (the ability to move without loss of balance) during gait related activ-
ities (walking, turning etc.) is essential for autonomy and should be assessed. Two biomechani-
cal parameters, the control of the center of mass (COM) and foot clearance, are considered
pertinent for the evaluation of dynamic stability and risk of tripping [4],[5],[6],[7].

The Timed Up and Go test (TUG) assesses gait related activities which involve dynamic sta-
bility. It involves rising from a chair, walking 3 meters, turning, walking back and sitting down
again. The task thus corresponds to activities regularly encountered in daily life [8]. This test is
widely used and is validated in stroke patients [9]. Performance is measured as the time to
carry out the test. It has been shown to be useful to identify fallers and non-fallers among older
subjects and stroke patients [10],[11],[12] however recent evidence suggests that its sensitivity
is low and its ability to predict falls is limited [11],[13],[14]. Balance capacity is the main pre-
dictor of falls and the relevance of the TUG for the assessment of balance and mobility has
been well demonstrated [12],[13]. However, performance time may not be a relevant criterion
for the accurate assessment of dynamic stability. Zampieri et al (2010) carried out an instru-
mented evaluation of the TUG in people with Parkinson’s disease [15]. They found no differ-
ence in TUG performance time between patients and healthy subjects but highlighted
differences in spatio-temporal parameters during the walking and turning sub-tasks using
accelerometers. This suggests that the evaluation of biomechanical parameters is particularly
pertinent to quantify dynamic stability and therefore to identify the main parameters related to
the risk of falls in each patient.

The displacement and velocity of the COM have been shown to be pertinent for the assess-
ment of dynamic stability during locomotion [6], [16]. The amplitude and lateral velocity of
the COM is increased during obstacle crossing in elderly individuals with loss of balance capac-
ity [17] as well as in subjects with brain injury [18],[19]. Vertical COM displacement is also
increased during gait in hemiparetic patients compared with healthy subjects [20]. Thus assess-
ment of COM displacement appears to be a useful parameter for the evaluation of dynamic sta-
bility in stroke patients.

Another useful parameter is minimum foot clearance (MFC), defined as the minimum ver-
tical distance between the lowest part of the foot of the swing leg and the walking surface dur-
ing the swing phase of the gait cycle [5]. Foot clearance is the result of shortening of the lower
limb due to a combination of hip, knee and ankle joint flexion. Foot trajectory is the primary
mode of error correction to allow stability during gait. Its analysis thus provides information
regarding dynamic stability while walking [21]. Patients with chronic stroke report lack of foot

PLOS ONE | DOI:10.1371/journal.pone.0140317 October 15,2015 2/14

94



Chapitre 3: Partie expérimentale

o ®
@ . PLOS | ONE Dynamic Stability during Oriented-Gait and Turn after Stroke

Table 1. Subject characteristics.

Age (years) Height (m) Weight (kg) Gender (m/f) Time since stroke (years) Hemiparetic side
Hemiparetic patients 54.2412.2 1.68+0.09 73.2+16.2 18m/ 11f 7.945.7 12 right / 17 left
Healthy subjects 51.648.7 1.67+0.1 65.6£14.7 11m/ 14f - -

doi:10.1371/journal.pone.0140317.t001

clearance as being a cause of falls [4],[7]. However, Little et al (2014) recently investigated foot
clearance of the paretic limb in 16 stroke patients and found that it was increased compared to
healthy subjects [22]. Thus the assessment of both COM displacement and foot clearance
should provide an accurate assessment of dynamic stability, helping to increase understanding
of the main biomechanical determinants of TUG test performance and to define which param-
eters are particularly related to the risk of falls in patients with stroke [2],[4],[23]. Such a com-
prehensive assessment may identify potential fallers who could then be targeted in falls
prevention programs. Moreover, recent guidelines highlighted the importance of objectively
assessing dynamic stability in hemiparetic patients during gait and activities of daily living
[21],[24].

The aims of this study were (i) to analyse the vertical and mediolateral displacement of the
COM and foot clearance in hemiparetic patients, and to compare them with healthy subjects
during the walking and turning sub-tasks of the TUG test; (ii) to evaluate the relationship
between COM parameters and foot clearance and TUG performance during the same TUG
sub-tasks; and (iii) to compare COM and foot clearance parameters between fallers and non-
fallers with hemiparesis. We hypothesized that the lateral and vertical displacement of the
COM would be greater and faster, and that MFC would be greater in patients with stroke than
in healthy subjects. We also hypothesized that COM parameters and MFC would be positively
correlated with TUG sub-task performance time, and that COM displacement would be greater
and MFC smaller in fallers with hemiparesis compared with non-fallers with hemiparesis.

Methods
Subjects

Twenty nine patients with chronic hemiparesis (mean age 54.2+12.2 years) and twenty five
healthy subjects (mean age 51.6+8.7 years) participated in this study. This number of subjects
was sufficient for a statistical power of 95%, based on the computation of the effect size and sta-
tistical power using previous data in the literature [9][25], and validated a posteriori with the
results of the present study [26]. Table 1 presents the characteristics of the participants. All the
patients were able to walk without assistance, the median New Functional Ambulation Classifi-
cation index was 7 (min 6 and max 8), the median lower limb strength score on the Medical
Research Council scale was 4 (min 2 and max 5), the median Berg Balance Scale score was 51
(min 45 and max 54) and the mean TUG time was 19.3+4.2sec. The inclusion criteria for the
patients were: age over 18 years, hemiparesis due to stroke, ability to carry out several TUG
tests without the use of an assistive device and medically stable enough for participation in the
protocol. Patients were excluded if they had other neurological, orthopedic or medical disor-
ders that might interfere with the test. Falls were defined as any event that led to an unplanned,
unexpected contact with a supporting surface [10]. According to this definition, 14 patients fell
during the 3 months prior to inclusion. Two of these patients were not considered as fallers in
this study since they did not fall during gait (one fell in the bathtub and the other entering a
car). The fallers group therefore consisted of 12 patients, and the non-fallers group of 17
patients. The healthy subjects had no neurological or orthopedic impairments. All patients and
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healthy subjects gave their written informed consent in accordance with the ethical codes of
the World Medical Association and the guidelines of our local ethics committee who approved
the study (Comité de protection des personnes Ile de France XI, Ref 13005. CNIL, Ref DR-
2013-283).

Experimental procedure

Three-dimensional (3D) kinematic data were recorded while subjects performed the TUG test.
Thirty-four markers placed on anatomical landmarks according to the Helen Hayes marker set
[27],[28],[29] were tracked by an optoelectronic motion capture system (sampling frequency
100 Hz, Motion Analysis Corporation, Santa Rosa, CA, USA). The same person positioned all
the markers to ensure good reliability. The greater trochanter and the anterior superior iliac
spine were added to improve the reconstruction of the trajectories of joint coordinate systems.
This marker set allowed the creation of a 12-segment rigid-link model of the body, using
Dempster's anthropometric table which is routinely used in gait analysis [30],[31].

All participants performed 3 TUG tests which involved rising from a stool, walking 3m,
turning around a cone and returning to sit, at their own comfortable speed. The original TUG
test involves a standard chair with armrests and does not specify the subject’s position or the
direction of the turn [8]. However to ensure the reliability of the results, the conditions were
standardized [32][33][34]. Subjects sat on a stool set to 100% of the distance from the head of
the fibula to the floor [35], their knees were flexed to 100°, feet were placed symmetrically and
arms were held out from the body [32],[33],[36],[37].

Marker trajectories were filtered using a low-pass Butterworth filter with a cut off frequency
of 6 Hz [38]. The phases of the gait cycle were defined according to Perry [39] and were deter-
mined using the Open-source Biomechanical Tool Kit package for MATLAB [40]. This tool
was also used to determine the 3 sub-phases of the TUG test (walking toward the cone (GO);
turning (Turn), return to the stool (Return)), according to previous studies [37],[41],[42]. The
data were then exported to Matlab (R14, The MathWorks Inc., Natick, MA, USA) for calcula-
tion of the biomechanical parameters.

The two walking sub-tasks (Go and Return) and the turning sub-task (Turn) of the TUG
were analyzed. The sit-to-stand and stand-to-sit sub-tasks were not considered since they have
already been largely evaluated in patients with stroke [35], [32]. The time taken to perform
each sub-task was measured.

Markers and estimated joint centers were used to calculate the center of mass (COM) of
each individual body segment [43].

Whole body COM position data were then calculated with the following Eq 1:

COMx = M T My o T :iimixf
M M

where M = whole body mass

mi = mass of the ith segment = (whole body mass) x (mass fraction for ith segment from the
anthropometrics.dat file)

xi = the x-coordinate of the center of mass for the ith segment with respect to the calibration
origin

N = the number of body segments

COM movements were analyzed in the subject reference frame with respect to the line of
gait, considered as the trajectory of the sacral marker.

The amplitude and velocity of COM displacement in the mediolateral (ML) and vertical
(Vert) directions were analyzed. The ML-COM displacement was the distance between the

PLOS ONE | DOI:10.1371/journal.pone.0140317 October 15,2015 4/14

96



Chapitre 3: Partie expérimentale

DR
@ ) PLOS ‘ ONE Dynamic Stability during Oriented-Gait and Turn after Stroke

most leftward and rightward positions of the COM and the Vert-COM displacement was the
distance between the highest and lowest positions of the COM. The maximum velocity of
COM displacement was also calculated in the mediolateral (ML-V) and vertical (Vert-V)
directions.

MEFC was calculated by subtracting the height of the toe marker (between the second and
the third toe) during mid-stance from the minimum height of the toe marker during mid-
swing, for each gait cycle and for both limbs, since reduced MFC at this instant indicates an
increased likelihood of tripping [44],[45],[46].

Statistical analysis

Descriptive statistics including means and standard deviations were calculated for each param-
eter and each sub-task of the TUG (Go, Turn, Return). The data were normally distributed
according to the Shapiro Wilk test. To compare hemiparetic patients and healthy subjects,
intergroup analysis, independent Student t tests were used for each TUG sub-task. To compare
sub-tasks (Go, Turn and Return) in each group (intragroup analysis) repeated measures
ANOVA were carried out. Tukey post hoc tests were then performed on significant compari-
sons. Correlations between TUG performance and COM and MFC parameters were tested
with Pearson’s correlations for both the hemiparetic patients and healthy subjects. The r values
were interpreted according to Domholdt [47]. To compare COM and MFC parameters
between fallers and non-fallers with hemiparesis, independent Student t tests were used. All
significance levels were set at p < 0.05.

Results

Results of the TUG performance time and COM and MFC parameters for each sub-task and
both groups are presented in Table 2.

Differences between hemiparetic patients and healthy subjects: inter-
group analysis

COM. Compared to healthy subjects, ML-COM amplitude was significantly greater for
hemiparetic patients during Go, significantly smaller during Turn and was not different during
Return. ML-V was higher for hemiparetic patients during Go and Return, and smaller during
Turn (Fig 1). Vert-COM was significantly greater for hemiparetic patients during Turn and
was not different during the Go and Return sub-tasks. There were no differences between
groups for Vert-V.

MEC. MEC on the paretic side was significantly greater for hemiparetic patients during
Go and Return sub-tasks when compared to healthy subjects but was not different during Turn
(Fig 2). MFC on the non-paretic side was significantly smaller for hemiparetic patients during
Turn when compared to healthy subjects but was not different during the Go and Return sub-
tasks.

Difference between sub-tasks of the TUG for each group: intra-group
analysis
COM. There were significant differences between sub-tasks for both groups for ML-COM,
ML-V, Vert-COM and Vert-V, except for Vert-COM between Go and Return for both groups.
MEC. There were significant differences between sub-tasks for both groups for MFC,
except between Turn and Return for the paretic side in the hemiparetic patients.
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Table 2. TUG performance, COM parameters and foot clearance in hemiparetic patients and healthy subjects during Go, Turn and Return sub-

tasks.
Hemiparetic patients Healthy subjects
Go Turn Return Go Turn Return
TUG performance time (sec) 4.56 (1.01) 3.16 (0.84) 3.81 (0.91)t 2,44 (0,28)* 1,41 (0,25)* 2,28 (0,45)*t
MFC on paretic side (cm) 2,84 (1,18) 3,71 (1,54) 3,72 (1,32)t 1,80 (0,75)* 3,21 (1,55) 2,52 (0,75)*t
MFC on non-paretic side (cm) 1,92 (1,11) 2,26 (1,00) 2,75 (1,00)t 1,98 (0,85) 3,00 (1,02)* 2,72 (0,60)t
ML-COM 8,91 (1,82) 19,02 (4,39) 9,19 (2,04)t 6,71 (1,60)* 25,36 (4,10)* 8,61 (2,01)t
ML-V 23,04 (4,38) 30,15 (5,91) 22,61 (4,56)t 16,97 (2,34)* 57,50 (10,56)* 16,51 (2,61)*t
Vert-COM 4,48 (1,07) 3,58 (0,78) 4,56 (0,99)t 4,24 (0,68) 3,14 (0,74)* 4,14 (0,67)t
Vert-V 18,93 (4,72) 15,50 (3,61) 20,48 (4,32)t 20,92 (4,42) 16,15 (4,35) 20,83 (3,84)1

* significant difference between hemiparetic patients and healthy subjects for the corresponding sub-task of the TUG p<0,05
1 significant difference between Go, Turn and Return p<0.05

doi:10.1371/journal.pone.0140317.t002
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Fig 1. Medio-lateral COM velocity.

doi:10.1371/journal.pone.0140317.9001
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Fig 2. Minimum foot clearance on paretic side.

doi:10.1371/journal.pone.0140317.9002

Correlations between TUG performance and, COM and MFC
parameters (Table 3)

There were significant correlations between TUG performance time and ML-COM (r = -0.59,
p =0.001) and ML-V (r = -0.61, p = 0.0001, Fig 3) for the Turn in the hemiparetic patients but
not for the healthy subjects. There was also a significant correlation between TUG performance
time and Vert-V for the Return in both groups. There were no significant correlations between
the other parameters and other sub-tasks. There were significant correlations between TUG

Table 3. Correlations between TUG performance time, and COM and MFC parameters for hemiparetic patients and healthy subjects.

Hemiparetic patients Healthy subjects

Go Turn Return Go Turn Return
MFC on paretic side (cm) R=0.31 R=-0.12 R=0.29 R=-0.13 R =-0.09 R=-0.13
MFC on non-paretic side (cm) R=0.33 R=0.22 R=0.13 R =-0.01 R =-0.09 R=-0.17
ML-COM R =0.31 R =-0.59*% R=0.25 R =-0.09 R=-0.38 R =-0.03
ML-V R=0.13 R=-0.61% R = 0.008 R =0.09 R=-0.39 R=-0.38
Vert-COM R=-0.12 R =-0.04 R =-0.06 R =-0.47* R =-0.04 R =-0.55*%
Vert-V R=-0.19 R =-0.30 R =-0.43* R=-0.71* R=-0.27 R =-0.64*

* significant correlation between TUG performance and the corresponding parameter at p<0,05

doi:10.1371/journal.pone.0140317.t003
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Fig 3. Correlation between ML COM velocity and TUG performance time during the turning sub-task in hemiparetic patients.

doi:10.1371/journal.pone.0140317.g003

performance time and Vert-COM and Vert-V for Go and Return in the healthy subjects but
not the hemiparetic patients.

Difference between fallers and non-fallers for COM and MFC
parameters

12 hemiparetic patients constituted the fallers group and 17 patients constituted the non-fallers
group. No differences were found between fallers and non-fallers for total TUG time (respec-
tively 18.61+2.78sec and 19.76+5.04) or time to perform the Go (respectively 4.42+0.94sec and
4.66+1.07), Turn (respectively 2.97+0.75sec and 3.29+0.90) and Return (respectively 3.55
+0.79sec and 4.00+0.97) TUG sub-tasks. Vert-V was higher for the fallers compared to the
non-fallers during the Turn (respectively 17.1+3.7cm/sec and 14.3+3.1cm/s, p = 0.04) but did
not differ between these groups during Go and Return. There were no differences between fall-
ers and non-fallers during any TUG sub-task for ML-COM and ML-V. There were no differ-
ences in MFC for either foot (paretic and non-paretic) between fallers and non-fallers.

Discussion

This is the first study to objectively and accurately assess dynamic stability and foot clearance
during a goal-directed walking task involving turning in hemiparetic patients. This assessment
is in line with recent recommendations regarding falls risk [21],[24] since impaired balance
while walking and potential foot dragging increase the risk of falls [2],[4],[23]. The aims of this
study were (i) to compare vertical and mediolateral displacements of the COM and foot clear-
ance between hemiparetic patients and healthy subjects during the walking and turning sub-
tasks of the TUG test; (ii) to analyze the relationship between COM and clearance parameters
and TUG performance during these TUG sub-tasks; and (iii) to compare COM and clearance
parameters between faller and non-faller patients with hemiparesis. The results showed that
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the majority of parameters studied differed between hemiparetic patients and healthy subjects.
The values of most parameters were greater during the walking sub-tasks and lower during the
Turn in the hemiparetic patients compared with the healthy subjects, except for vertical COM
displacement.

We hypothesized that lateral and vertical COM displacement would be greater and faster in
the hemiparetic patients during the walking and turning sub-tasks of the TUG. This hypothesis
was confirmed for the ML direction during the walking sub-tasks (except ML-COM on
Return). This is in accordance with previous studies in the elderly and subjects with brain
injury during gait and obstacle crossing [17],[18],[19],[48]. This result reflects greater instabil-
ity in hemiparetic patients compared to healthy subjects when walking towards a goal and pre-
paring to turn. This might be explained by the fact that healthy subjects minimized lateral
displacements in order to maximize forward body transfer [49].

The motor behavior during the turning sub-task was interesting. This task involved turning
around a cone, consisting essentially of a rotation of the body toward the new direction with a
lateral translation of the COM [50]. Displacement of the COM in the ML direction was smaller
and slower during the Turn in the patients, reflecting a less efficient movement than the
healthy subjects. Such adaptations have already been evoked by Patla et al (1999) and Vallis
et al (2004) who suggested that healthy subjects reduce motion of the COM when directional
changes are required [51],[52]. Similarly Hollands et al (2001) showed that when healthy sub-
jects turn, there is a lateral displacement of the COM which reflecting translation of the body
in the direction of the turn [50]. It could be hypothesized that hemiparetic patients slow lateral
COM movement to increase stability. Recently Hurt et al (2015) found that lateral COM veloc-
ity was greater in young adults performing a lateral step during forward walking compared to
older adults [53]. The authors suggested that the younger subjects favored maneuverability
whereas the older subjects favored stability. The findings of the present study during the turn
sub-task are in accordance with these results. Moreover, ML displacement and velocity of the
COM were greater in both the patients and the healthy subjects during turning compared to
the walking sub-tasks. This is not surprising since turning induces more movement in ML
direction relative to walking forward.

Surprisingly, there were no differences between the groups for vertical displacement and
velocity of the COM during the walking sub-tasks. This contrasts with the results of Detrem-
bleur et al (2003) which showed increased vertical displacement of the COM during walking in
hemiparetic patients compared to healthy subjects [20]. Our result is nevertheless in accor-
dance with Chou et al (2004) who found no differences in vertical COM between subjects with
brain injury and healthy subjects during obstacle crossing [18]. The differences between these
results may be related to differences in the tasks evaluated: goal-oriented gait in the present
study, straight-line walking in the study by Detrembleur et al (2003) and obstacle crossing in
the study by Chou et al (2004).

During the turning sub-task, we found greater vertical displacement of the COM in the
patients compared to healthy subjects (no difference for velocity). This likely reflects greater
instability when performing movements in the ML plane since stability requires online control
of COM displacement. Healthy subjects may control vertical COM displacement in order to
ensure the efficiency of lateral movements during a turn. Turning requires altering the spatial
reference to focus on the ML direction in contrast with walking forward. This type of task thus
seems to affect vertical COM movements.

We hypothesized that COM movements would be positively correlated with the time to per-
form the sub-tasks of the TUG. The results showed that ML COM displacement and velocity
were significantly negatively correlated (moderate correlations according to Domholdt) with
TUG performance time during the turning sub-task in the hemiparetic patients. This reinforces
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our previous argument that efficient turning requires sufficient ML displacement [50],[51],
[53]. Vertical COM movements were not correlated with TUG performance in the hemiparetic
patients but were negatively correlated with performance time for the walking sub-tasks in the
healthy subjects. Positive relationships have been found between increased gait velocity and
increased vertical COM movements in healthy subjects, which is in accordance with our results
[49],[54]. The relationship between ML COM parameters and performance time in the hemi-
paretic patients suggests that ML COM parameters are more relevant than vertical COM
parameters for the assessment of dynamic stability and to explain the performance of hemi-
paretic patients during the TUG test.

We expected that hemiparetic patients would exhibit greater MFC in comparison with
healthy subjects. Our results partly confirmed this hypothesis, showing that MFC was greater
on the paretic side during the walking sub-tasks but not during turning. These results are in
accordance with those of Little et al (2014) who also found an increase in foot clearance during
walking in hemiparetic patients compared to healthy subjects [22]. They assessed 16 individu-
als with stroke during over-ground walking at self-selected speed and 9 non-disabled control
subjects, and found MFCs of respectively 3.25+0.34cm and 1.48+0.69cm. Winter (1992)
reported a MFC of around 1.29cm for healthy subjects [44]. In the present study, we found
higher MFCs during the walking sub-tasks for both groups (see Table 2). This difference could
be due to the type of the task assessed, walking in anticipation of turning may be more complex
than walking in a straight line as in the studies by Little et al and Winter. It was also interesting
to note that, although during the walking sub-tasks there were no differences between non-
paretic MFC and healthy subject MFC, non-paretic MFC was lower during the turn. This was
not the case for paretic MFC. Turning while walking is a complex task requiring more control
than straight walking to avoid tripping. This may explain the greater MFC in the healthy sub-
jects during turning compared to the walking sub-tasks. Similarly, paretic MFC was increased
between Go and Turn in the hemiparetic patients and remained increased for Return on the
paretic side, or increased more for Return on the non-paretic side. We could hypothesize that
the higher MFC during walking in hemiparetic patients and during turning in both groups
reflect adaptations to potentially complex situations requiring greater control. This is corrobo-
rated by other studies. Heasley et al (2004) found a significant increase in MFC when healthy
subjects stepped up with blurred vision compared with clear vision, suggesting that the safety
margin is increased in uncertain conditions [55]. MFC is also increased when walking over
rocky ground compared with smooth [56]. These results all suggest that MFC is increased
in complex or uncertain conditions to reduce the risk of tripping [55],[56],[57] whatever
the population studied. This parameter thus provides information regarding gait adaptations
to complex conditions, but is not correlated with TUG performance time in hemiparetic
patients.

We also hypothesized that COM movements would be greater and MFC smaller in fallers
with hemiparesis than non-fallers. The TUG test is considered to be useful to identify fallers
and non-fallers among older subjects and stroke patients [10],[11],[12], however our results
showed that the time taken to carry out each sub-task of the total TUG did not differ between
fallers and non-fallers. The only parameter which differed between fallers and non-fallers was
the vertical velocity of the COM during the turning sub-task. This parameter is related to
dynamic stability and can thus distinguish fallers from non-fallers during a complex locomotor
task. MFC (related to the risk of tripping) and ML COM displacement did not differ between
fallers and non-fallers. This is in accordance with a recent review in elderly subjects stating that
MEFC does not generally differ between fallers and non-fallers [7].
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Limits

Displacement of the COM should be interpreted with caution. This parameter depends on bal-
ance capacity; previous studies found greater displacement of the COM in subjects with
impaired balance [18],[19],[20]. However, it also depends on gait speed [49],[54]. Orendurff
et al (2004) and Staszkiewicz et al (2010) showed that vertical COM displacement increased
and lateral COM displacement decreased with increasing gait velocity in healthy subjects [49],
[54]. In the present study, the gait speed of the patients was lower than the healthy subjects,
thus, according to the literature, COM displacement should have been smaller in the vertical
direction and greater in the lateral direction compared to healthy subjects for the walking sub-
tasks. However COM parameters were either greater in the hemiparetic patients or not differ-
ent between groups, thus we can be confident with our previous interpretation. Hamacher et al
(2011) reviewed studies of gait stability in elderly subjects and suggested that the analysis of
variability is the most pertinent assessment to differentiate fallers from non-fallers [21]. Vari-
ability of MFC is greater in older fallers compared to older non-fallers [7]. We could not ana-
lyze this parameter because of the small number of gait cycles involved in the TUG test.
However, it might be interesting to carry out an analysis of variability in further studies with a
large number of trials and a large number of gait cycles.

Conclusion

This study presents an innovative approach for the assessment of dynamic stability and risk of
tripping during gait-related activities of daily living in hemiparetic patients, as has been recom-
mended [21],[24]. The results suggest that the analysis of ML COM parameters is relevant for
the assessment of dynamic stability and to explain TUG performance in hemiparetic patients.
ML COM velocity decreased during turning, reflecting cautious gait. It increased during ori-
ented-gait, reflecting instability. Vertical COM velocity during the turn distinguished fallers
from non-fallers. Turning appears to be a relevant locomotor task to analyze dynamic stability
and risk of falling. MFC reflected adaptations during goal-oriented gait in the hemiparetic
patients but was not related to performance time. The instrumented analysis of gait-related
activities of daily living thus has important clinical applications. Accurate analysis of COM dis-
placements during oriented gait and turning tasks of the TUG in hemiparetic patients is useful
to understand instability and risk of falling. Further studies assessing the effects of rehabilita-
tion programs on the control of dynamic stability and risk of tripping in hemiparetic patients
would be useful.
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Les résultats de cette étude ont mis en évidence des déplacements du COM plus importants
pour les patients hémiparétiques, par rapport aux sujets sains, dans le plan médio-latéral pour les
phases de marche orientée et dans le plan vertical pour la phase de demi-tour, traduisant une plus
grande difficulté a maintenir la stabilité. De plus, la vitesse verticale du COM lors du demi-tour permettait
de discriminer les patients chuteurs (ayant une plus grande vitesse). Les déplacements latéraux du
COM lors du demi-tour n’étaient pas plus importants pour les patients hémiparétiques, suggérant une
marche précautionneuse des patients lors de cette phase. Ceci pourrait traduire une stratégie mise en
jeu par les patients hémiparétiques pour assurer le maintien de leur stabilité.

Un MFC plus important pour les patients hémiparétiques était retrouvé lors des phases de marche
orientée uniquement, signant une capacité d’adaptation des patients hémiparétiques a une situation
potentiellement a risque d’instabilité.

Les résultats de cette étude indiquaient également I'existence d’une corrélation entre les
déplacements du COM et la performance au TUG lors de la phase du demi-tour chez les patients
hémiparétiques.

Cette étude Iégitime, en pratique clinique, une analyse des déplacements du COM et du MFC
au cours d’activités locomotrices variées. Cependant, le questionnement des principaux symptémes
cliniques impliqués dans le défaut de stabilité des patients hémiparétiques lors d’une tache locomotrice
complexe demeure a I'issue de cette étude. Par conséquent, il semble gu’une meilleure connaissance
des symptémes possiblement incriminés dans ces perturbations pourrait permettre de guider la prise
en charge thérapeutique des patients et ainsi mieux prévenir leur risque de chute.
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Résultats complémentaires : Corrélations entre les données cliniques des patients
hémiparétiques et, les paramétres du COM et le MFC

Contexte

Les résultats de I'étude précédente ont montré que les paramétres de stabilité et de MFC évalués
lors des taches de marche orientée et de demi-tour du TUG différaient entre les patients hémiparétiques
et les sujets sains. Linfluence des déficits sensitifs, moteurs et des troubles de I'équilibre évalués
cliniguement, des patients hémiparétiques pour le contrble de ces paramétres du COM et du MFC au
cours de différentes taches locomotrices n’a, a ce jour, jamais été spécifiquement étudiée. Pourtant une
meilleure connaissance de leur impact respectif sur la stabilité au cours d’activités locomotrices variées
pourrait s’avérer trés intéressante d’une part pour mieux comprendre les mécanismes impliqués et
d’autre part pour améliorer la prise en charge thérapeutique de ces patients.

Par conséquent I'objectif de cette analyse complémentaire était d’établir les liens entre les
parametres de déplacement du COM dans les plans latéral et vertical ainsi que les paramétres de MFC
d’une part et les données issues du bilan clinique des patients hémiparétiques d’autre part. Nous avons
émis I’hypothese que les données cliniques relatives aux capacités d’équilibration telles que le score de
la Berg Balance Scale (BBS) seraient les plus corrélées aux parametres du COM et du MFC.

Méthode

Les paramétres du COM et du MFC des vingt-neuf patients hémiparétiques au cours des phases
de marche orientée et de demi-tour du TUG (réalisé en condition standardisée) ont été corrélés a la
spasticité, a la commande motrice, a la sensibilité superficielle et profonde, au score a la BBS et a la
confiance que le patient a en son équilibre lors d’activités diverses.

Les paramétres cliniques étudiés étaient les suivants :

- La spasticité a été évaluée par I'échelle d’Ashworth modifiée et le score global correspondait a
la somme des scores obtenus lors de I'évaluation des muscles fléchisseurs et extenseurs de genou et
de cheville du c6té parétique.

- La commande motrice a été évaluée par I’échelle Medical Research Council (MRC) et le score
global correspondait a la somme des scores obtenus lors de I'évaluation des muscles fléchisseurs et
extenseurs de hanche, de genou et de cheville du coté parétique.

- La sensibilité superficielle a été évaluée sur la plante de pied et la sensibilité profonde a été
évaluée au niveau du gros orteil par le Nottigham sensory assessment.

- Les capacités d’equilibre ont été évaluées par la Berg Balance Scale (BBS).

- La confiance du patient en son équilibre a été évaluée par I' Activities-specific Balance Confidence
(ABC).
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Les parametres du COM et le MFC ont été quantifiés selon la méme méthode que celle décrite
dans I'article précédent

Les paramétres du COM et du MFC des vingt-neuf patients hémiparétiques au cours des phases
de marche orientée et de demi-tour du TUG (réalisé en condition standardisée) ont été corrélés a la
spasticité, a la commande motrice, a la sensibilité superficielle et profonde, au score a la BBS et a la
confiance que le patient a en son équilibre lors d’activités diverses. Les données n’étant pas toutes
continues, des corrélations de Spearman ont été effectuées avec un seuil de significativité retenu a
p<0.008 (correction effectuée : 0.05 / 6 parameétres) et la force de la corrélation était interprétée d’apres
Dombholdt (Domholdt, 2000).

Résultats

Les scores aux évaluations cliniques ont été précédemment présentés dans le tableau 5. Les
détails des scores moteurs, sensitifs et fonctionnels sont présentés dans les annexes 2, 3 et 4. Les
résultats des corrélations sont présentés dans le tableau 6.
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Tableau 6 : Corrélations entre les données cliniques et les paramétres du COM dans les plans
vertical et médio-latéral et le MFC des patients hémiparétiques (présentation des r de Spearman).

0,13 -0,14

0,17 , , -0,03 -0,04 -0,01
_ 0,21 0,08 -0,13 0,13 0,18 0,31
_ 0,14 0,12 -0,21 -0,16 0,06 0,16
_ 0,00 -0,10 -0,11 0,10 -0,46 -0,21
_ -0,14 0,06 0,17 -0,18 -0.27 -0,06
_ 0,18 -0,06 -0,07 0,02 -0,34 0,09
_ -0,04 -0,13 0,07 0,00 -0,12 -0,26
_ 0,13 -0,20 -0,09 -0,18 -0,07 -0,04
_ -0,26 0,43 0,36 0,18 0,54* 0,10
_ -0,08 0,31 0,21 0,09 0,38 0,19
_ -0,24 -0,02 0,06 -0,13 -0,09 -0,16
_ 0,12 -0,08 -0,12 -0,22 0,03 0,038
_ -0,02 -0,20 0,28 0,16 0,04 0,27
_ 0,11 -0,18 0,00 0,10 0,01 0,38
_ -0,30 -0,05 0,05 -0,06 -0,04 0,02
_ -0,01 0,03 -0,24 -0,26 -0,04 0,25
_ -0,06 -0,16 0,30 0,18 0,07 0,31
_ 0,038 -0,13 -0,08 0,00 0,04 0,41

MFC : minimum foot clearance

COM ML Ampl : amplitude des déplacements du COM dans le plan médio-latéral

COM ML Vitesse : vitesse des déplacements du COM dans le plan médio-latéra

COM vert Ampl . amplitude des déplacements du COM dans le plan vertical

COM vert Vitesse : vitesse des déplacements du COM dans le plan vertical

LLa somme des scores de spasticité correspond aux muscles quadriceps, ischio-jambiers et triceps sural (évalué avec 'échelle
d’Ashworth modifiée)

La somme des scores de MRC (motricité volontaire) correspond aux fléchisseurs et extenseurs de la hanche, du genou et de la
cheville (évalués avec I'échelle Medical Research Council, MRC)

La pression de la plante de pied et la sensibilité profonde (des orteils dans ce tableau) ont été évaluées avec le Nottigham
sensory assessment

BBS, Berg Balance Scale, évaluant I'équilibre (score 0/ 56)

ABC, Activities-specific Balance Confidence, évaluant la confiance que le patient a en son équiliore au cours de diverses
activités quotidiennes (score 0/ 100%)

* Corrélation significative a p<0.05 (corrélation de Spearrman)
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La BBS était significativement positivement corrélée avec I'amplitude de déplacement du COM
dans le plan médio-latéral lors du Demi-tour. Aucune autre corrélation significative n’était retrouvée pour
la spasticité, la motricité volontaire, la sensibilité et la confiance que le patient a en son équilibre.

Discussion

Le seul parameétre clinique corrélé aux parametres du COM et du MFC était le score a la BBS.
Plus le patient avait un score élevé a la BBS, plus son amplitude de rotation au cours du demi-tour
était élevée. Cette corrélation positive, qu’on peut qualifier de modérée d’aprés Domholdt (r compris
entre 0.50 et 0.69) (Domholdt, 2000), traduit I'importance de I’équilibre pour une réalisation efficiente de
cette tache du contournement d’un obstacle. Ceci corrobore les paramétres reflétant I'équilibration lors
de la marche (pourcentage de simple appui c6té parétique et de phase oscillante cdté non-parétique)
explicatifs de la performance lors du demi-tour (résultats de I’étude 1). De plus, le score des patients a la
BBS est également le paramétre clinique corrélé avec le plus grand nombre de paramétres explicatifs de
la performance, pour chacune des phases du TUG analysées (résultats de I'étude 1). Ceci est également
en accord avec |'évolution précautionneuse des patients constatée lors du demi-tour (diminution des
mouvements du COM dans le plan médio-latéral — résultats de I'étude 3).

Au final, il semble légitime de trouver une corrélation entre les parameétres biomécaniques de
stabilité et I'échelle clinique d’évaluation de I'équilibre. Cependant, les capacités d’équilibre étant
connues pour étre en lien avec les déficits sensitivo-moteurs, il est surprenant de ne trouver aucune
corrélation significative entre les paramétres du COM et du MFC et, les déficits sensitivo-moteurs des
patients.

Les résultats de I'’étude 1 ont mis en évidence une corrélation entre les déficits de la motricité
volontaire et les parametres explicatifs de la performance lors du demi-tour (parametres reflétant la
stabilité), mais I'importance du déficit moteur ne semble pas interférer avec la régulation du COM et du
MFC comme en témoigne le résultat des corrélations de cette étude. Par conséquent, les résultats de
la présente étude mettent en exergue I'importance de la stabilité, sans particulierement incriminer les
déficits moteurs, la spasticité ou les troubles sensitifs, pour effectuer de maniere efficiente et sécuritaire
un demi-tour par contournement d’un obstacle. Lors d’une tache de navigation impliquant un demi-
tour, la stabilité ne semble donc pas spécifiqguement expliquée par un symptébme en particulier (les
déficits moteurs, la spasticité, les troubles sensitifs superficiels ou profonds) mais probablement par
une conjonction de symptémes.
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Etude 4 : Caractérisation de I'organisation des patients hémiparétiques par rapport a des
sujets sains, a partir de I'analyse de leur trajectoire locomotrice lors des phases de marche
orientée et de demi-tour du TUG.

Les études précédentes montraient que pour faire face a des situations potentiellement a
risque, les patients hémiparétiques font preuve d’adaptations avec une majoration du MFC, le
ralentissement du mouvement et la priorisation de certains parametres spatio-temporels lors d’un
demi-tour. Les études précédentes étaient centrées sur des parametres focaux et spécifiques
relatifs a la cinématique des membres inférieurs et la stabilité. Une approche récemment proposée,
renseignant sur le comportement locomoteur global du suijet, est I'analyse des trajectoires
locomotrices au cours de taches de navigation dans I'espace. L’étude de celles-ci chez le patient
hémiparétique s’avererait par conséquent intéressante dans ce contexte de marche orientée et demi-
tour générant des difficultés a maintenir la stabilité. Les résultats de I'étude 3 conduisent a s’interroger
sur I'existence d’une possible gestion particuliere de la trajectoire pour une tache locomotrice
suscitant un défaut de stabilité chez les patients hémiparétiques.

Les objectifs de cette étude étaient (1) d’analyser les trajectoires locomotrices des patients
hémiparétiques lors des phases de marche orientée et de demi-tour du TUG et les comparer a celles
des sujets sains ; (2) de comparer les parameétres des trajectoires entre les patients hémiparétiques
chuteurs et les non-chuteurs et entre les patients hémiparétiques droits et gauches; et (3) évaluer la
corrélation entre les parameétres de trajectoire et le score a la BBS des patients hémiparétiques. Nous
émettions I’nypothése que les trajectoires des patients hémiparétiques seraient déviées par rapport
a celles des sujets sains et particulierement lors de la phase du demi-tour du TUG, phase la plus
complexe en terme de stabilité (Lamontagne et al., 2010). Nous émettions également I’hypothése que
les trajectoires seraient différentes entre les patients hémiparétiques chuteurs et les non-chuteurs et
seraient plus déviées chez les patients hémiparétiques gauches que chez les patients hémiparétiques
droits du fait de I'altération de la perception de la verticale a la suite d’un AVC hémisphérique droit.
Nous supposions par ailleurs que les trajectoires les plus longues seraient liées aux faibles scores a
la BBS, en considérant que les patients les moins stables dévieraient le plus de la trajectoire optimale
pour assurer une bonne stabilité.

La trajectoire du centre de masse a été analysée chez vingt-neuf patients hémiparétiques
et vingt-cing sujets sains effectuant le TUG en condition standardisée. La déformation temporelle
dynamique et la distance de Hausdorff, parametres permettant de quantifier la déviation entre une
trajectoire considérée (du sujet analysé) et une trajectoire de référence (moyenne de la trajectoire des
sujets sains) et, la longueur de la trajectoire totale lors du TUG ont permis de comparer les patients
hémiparétiques et les sujets sains, les patients chuteurs et non-chuteurs et les patients ayant été
victimes d’un AVC hémisphérique droit et ceux victimes d’'un AVC hémisphérique gauche.
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Abstract

Background

The Timed Up and Go (TUG) test is widely used to assess locomotion in patients with stroke
and is considered to predict the risk of falls. The analysis of locomotor trajectories during the
TUG appears pertinent in stroke patients. The aims of this study were i) to analyze locomo-
tor trajectories in patients with stroke during the walking and turning sub-tasks of the TUG,
and to compare them with healthy subjects, ii) to determine whether trajectory parameters
provide additional information to that provided by the conventional measure (performance
time), iii) to compare the trajectory parameters of fallers and non-fallers with stroke and of
patients with right and left hemisphere stroke, and iv) to evaluate correlations between tra-
jectory parameters and Berg Balance Scale scores.

Methods

29 patients with stroke (mean age 54.2+12.2 years, 18 men, 8 fallers) and 25 healthy sub-
jects (mean age 51.6+8.7 years, 11 men) underwent three-dimensional analysis of the
TUG. The trajectory of the center of mass was analyzed by calculation of the global trajec-
tory length, Hausdorff distance and Dynamic Time Warping. The parameters were com-
pared with a reference trajectory during the total task and each sub-task (Go, Turn, Return)
of the TUG.

Results

Values of trajectory parameters were significantly higher for the stroke group during the
total TUG and the Go and Turn sub-tasks (p<0.05). Moreover, logistic regression indicated
that these parameters better discriminated stroke patients and healthy subjects than the
conventional timed performance during the Go sub-task. In addition, fallers were
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distinguished by higher Dynamic Time Warping during the Go (p<0.05). There were no dif-
ferences between patients with right and left hemisphere stroke.

Discussion and Conclusion

The trajectories of the stroke patients were longer and more deviated during the turn and
the preceding phase. Trajectory parameters provided additional information to timed perfor-
mance of this locomotor task. Focusing rehabilitation programs on lead-up to turn and turn-
ing could be relevant for stroke patients since the Turn was related to the balance and the
phase preceding the turn seemed to distinguish fallers.

Introduction

Stroke is a major cause of disability in adults [1]. It frequently results in hemiparesis (partial
paralysis of one side of the body) which causes slow gait with kinematic anomalies [2],[3].
Methods of quantitative gait analysis are becoming increasingly used in clinical practice to aid
clinical decision-making by the assessment of spatio-temporal, kinematic and kinetic parame-
ters [4]. Three-dimensional analysis is the current gold standard for the biomechanical assess-
ment of patients with abnormal gait [5]. This typically involves the analysis of straight-line
gait, however straight-line gait does not reflect daily life situations which include curved paths,
obstacle circumvention and U-turns [6]. Curved paths and obstacle circumvention have been
studied in healthy subjects [7],[8],[9] and more recently in subjects with stroke [10],[11],[12].
The Timed Up and Go (TUG) test [13],[14] involves rising from a chair, walking 3m, turning
180°, returning, and sitting down again. It thus reflects the main aspects of gait required in
daily life. It is rated according to performance time [13],[14],[15]. The test is useful and is
quick and easy to perform, therefore it is widely used in clinical practice for the assessment of
global locomotor capacity in stroke patients. However, performance time does not provide any
information regarding the biomechanical behaviour of patients during the test. Moreover, sev-
eral authors have recommended refining the TUG test by timing each sub-task (23), as well as
carrying out a biomechanical analysis of each sub-task (24).

A recent approach to the analysis of biomechanical behavior during tasks involving curved
gait is the study of trajectory. Locomotor trajectory has been evaluated in healthy subjects dur-
ing imposed straight and curved walking (indicated by a line drawn on the floor) [7] as well as
walking through doors with different spatial orientations [16]. The results suggest that the con-
trol of the locomotor pattern is based on the whole-body locomotor trajectory, rather than a
sequence of foot pointings. To our knowledge, only one study has investigated locomotor tra-
jectory in stroke patients [17]. The trajectories of patients with stroke and healthy subjects
were evaluated in a virtual environment which created 5 different scenes of translational optic
flow (a pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by
the relative motion between an observer and the scene) [17]. The medio-lateral and antero-
posterior trajectories of the center of mass (COM) were computed while subjects were
instructed to “walk straight with respect to the scene they were visualizing”. Displacement of
the COM was altered in the patients with motor disorders in contrast with the healthy subjects
who displayed stereotypical behavior. The authors suggested that this was the result of an alter-
ation in perception and/or a poor integration of sensorimotor information. No studies have
analyzed the spontaneous trajectories of patients with stroke in a “real environment” during
tasks encountered in daily life. Since many stroke patients have spatial disorders, such an
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analysis would be clinically relevant to guide rehabilitation, and the TUG test appears to be a
pertinent test on which to base the analysis. Moreover, this test can easily be broken down into
sub-tasks to analyze different locomotor task. In addition, it has been shown that perception of
body verticality is altered following right hemisphere stroke [18], thus locomotor trajectories
may differ between patients with right and left hemisphere stroke.

Several methods in the literature have been used to evaluate locomotor trajectories. The
amount of deviation from either a required or an averaged trajectory appears to be particularly
relevant [7],[16]. Trajectory deviation can be quantified using several parameters. The simplest
is the Euclidean distance, however this method is not sufficiently accurate to compare groups
with different gait velocities [19]. The Hausdorff Distance (HD) and Dynamic Time Warping
(DTW) appear to be appropriate for the present study since these parameters can be used to
compare the geometry and the spatio-temporal time series of two sequences of different
lengths. HD and DTW have been used to evaluate moving objects [20], for handwriting recog-
nition [21] and to study walking behavior [22],[23]. Since the gait of stroke patients is slower
than that of healthy subjects, these parameters are pertinent [19],[20] to compare their locomo-
tor trajectories.

The TUG test is considered to indicate a risk of falls [24],[25]. Older subjects are classified
as fallers if they take 13.5sec or more to perform the test and stroke patients are considered at
risk of falls if they take 15sec or more [24],[25]. However, a more recent study has suggested
this test is not sufficiently accurate to discriminate fallers and non-fallers [26]. We thus propose
to use HD and DTW to determine whether these trajectory-related parameters might permit to
distinguish stroke-related fallers and non-fallers.

The aims of this study were thus: i) to analyze locomotor trajectories using HD and DTW in
patients with stroke during the walking and turning sub-tasks of the TUG and to compare
them with healthy subjects; ii) to determine whether trajectory parameters provide additional
information to that of the conventional measure (performance time); iii) to compare the trajec-
tory parameters of fallers and non-fallers with stroke and of patients with right and left hemi-
sphere stroke and iv) to evaluate correlations between trajectory parameters and Berg Balance
Scale scores. This study is the first to assess the locomotor trajectories of patients with stroke in
real life conditions. The results should yield pertinent information for clinicians, helping to ori-
entate rehabilitation and perhaps also to identify potential fallers. We hypothesized: 1) that the
trajectories of stroke patients would deviate from those of healthy subjects, particularly during
the Turn sub-task of the TUG since this task is the most challenging regarding stability, 2) that
trajectory parameters would provide additional information to performance time, 3) that tra-
jectories would differ between fallers and non-fallers and that since right hemisphere large ves-
sel distribution stroke may alter perception of body verticality, it may also alter the locomotor
trajectories and 4) that longer trajectories would be related to a poorer BBS scores since we sup-
posed that patients with impaired balance would deviate from the optimal trajectory to ensure
stability.

Methods
Subjects

Twenty nine patients with chronic stroke (mean age 54.2+12.2 years, 18 men), who were in- or
outpatients in our department of physical medicine and rehabilitation, and twenty five healthy
subjects (mean age 51.6+8.7 years, 11 men) were included. This number of subjects was suffi-
cient to obtain a minimum statistical power of 95% with a significance level (alpha error) of
0.05, based on calculation of the effect size and statistical power using previous data published
on TUG performance in stroke subjects [14],[27] [28]. Based on the current sample size and
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the results of DTW during the Turn and trajectory length, the effect sizes obtained were respec-
tively 1.56 and 2.37 and the subsequent powers were respectively 0.99 and close to 1 which
allow us to be confident in our results. Inclusion criteria were: hemiparesis following stroke,
over 18 years old and able to carry out the TUG test several times consecutively without using
an assistive device. Exclusion criteria were the diagnosis of other neurological or orthopedic
conditions, or having undergone surgical procedures during the last 6 months. Participants’
characteristics are presented in Table 1. Patients were considered as fallers if they had fallen at
least once within the last 3 months. The fallers’ characteristics are presented in Table 2. Eight
patients had gait-related falls and constituted the group of fallers in this study. Six of these
patients had fallen indoors (one while walking, one while walking in a narrow space, three
while turning and one tripped on a rug) and 2 patients had fallen outdoors in crowded spaces.
Six patients were not included in the faller group since they fell in conditions that did not

Table 1. Subject characteristics.

Stroke patients Healthy subjects

(n=29) (n=25)

Age (years) 54.2412.2 51.648.7

Height (m) 1.68+0.09 1.67+0.1

Weight (kg) 73.2£16.2 65.6+14.7

Gender (m/f) 18m/ 11w 11m /14w

Mean self-selected gait speeds for the walking phases 0.4+0.006 0.7+0.04

of the TUG (m/s)
Time since stroke (years) 7.915.7 -
Stroke etiology 19 ischemia / 10 -
hemorrhage

Hemiparetic side 12 right / 17 left -
Falls 8 fallers related to gait -
Modified Ashworth sum 4[2;7] -
MRC sum 23[19;25] -
Foot sensation 1[1;2] -
Toe proprioception 2[1;3] -
Barthel index 100 [95;100] -
NFAC 717;7] -
BBS 51 [49;52] -
ABC 76,3£12,9 -

Patients with stroke had a significantly decreased gait speed compared to healthy subjects (p<0.05)
Falls: patients were considered as fallers if they had fallen at least once within last 3 months

Spasticity: median [interquartile range Q1;Q3] of the sum of quadriceps, rectus femoris, hamstring and
triceps surae spasticity assessed with Modified Ashworth Scale (0—4).

MRC (Medical Research Council scale): median [interquartile range Q1;Q3] of the sum of hip, knee and
ankle flexor and extensor strength (0-5)

Foot sensation: median [interquartile range Q1;Q3] of the foot sensation score assessed with the
Nottingham Sensory Assessment (0 = absent, 1 = impaired, 2 = normal)

Toe proprioception: median [interquartile range Q1;Q3] of the toe proprioception score assessed with the
Nottingham Sensory Assessment (0 = absent, 1 = direction incorrect, 2 = direction ok, inaccurate position,
3 = direction ok, position accurate to 10°)

Barthel index: median [interquartile range Q1;Q3] Barthel score (0 to 100)

NFAC: median [interquartile range Q1;Q3] New Functional Ambulation Classification score (0 to 8)

BBS: median [interquartile range Q1;Q3] Berg Balance Scale score (0 to 56)

ABC: meanztsd Activities-specific Balance Confidence scale (0 to 100%)

doi:10.1371/journal.pone.0149757.t001
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Table 2. Characteristics of the fallers and non-fallers.

Fallers (n = 8) Non-fallers (n = 21)
Age (years) 59,5+11,6 52,2+12,1
Gender (m/f) 3m /5w 15m / 6w
Hemiparetic side 2 right / 6 left 10 right / 11 left
TUG (sec) 19,7+1,8 19,1+4,9

doi:10.1371/journal.pone.0149757.t002

involve walking (in the bathtub, on the stairs, rising from a chair, crossing an obstacle and
entering a car). All patients were found to be capable of providing informed consent during the
medical examination, and all gave written informed consent in accordance with the ethical
codes of the World Medical Association. The study was approved by our local ethics committee
(Comité de protection des personnes Ile de France XI, Ref 13005. CNIL, Ref DR-2013-283).

Experimental procedure

All participants performed 3 TUG tests under standardized conditions. They wore the same
type of comfortable shoes [29], sat on a stool set to 100% of the distance from the head of the
fibula to the floor [30] with their knees flexed to 100°, their feet placed symmetrically and their
arms held out from the body [31],[32],[33]. Participants were instructed to rise from the stool,
walk 3m, turn around a cone towards their paretic side (non-dominant side for healthy sub-
jects), return to the stool and sit down, at their own comfortable speed. The TUG tests were
recorded with a motion analysis system (Motion Analysis Corporation, Santa Rosa, CA, USA,
sampling frequency 100 Hz). Thirty-four markers were fixed, by the same person, to specific
bony landmarks according to the Helen Hayes marker set [34],[35],[5]. The marker set was
used to create a 12-segment rigid-link model of the body using Dempster's anthropometric
table which is routinely used in gait analysis [36],[37]. Markers were tracked by 8 infrared cam-
eras and trajectories were filtered using a low-pass Butterworth filter with a cut off frequency of
6 Hz [38]. An open-source Biomechanical Tool Kit package for MATLAB [39] was used to
define the phases of the gait cycle and sub-tasks of the TUG. The gait phases were defined
according to Perry [3] and sub-tasks of the TUG were defined according to previous studies
[33],[40],[41]. The three sub-tasks of the TUG that involve walking were analysed: the first ori-
ented-gait sub-task (Go) which begins at toe off of the first step and ends with the first foot
strike in the direction of the turn, the turning sub-task (Turn) which ends at the first foot strike
lined up with the stool and the second oriented-gait sub-task (Return) ends with foot strike of
the last step prior to the turn to sit [12].

Locomotor trajectory was evaluated by the displacement of the center of mass (COM) with
the following equation 1:

CoMx = M X A izN:mixi
M M=

where M = whole body mass

mi = mass of the ith segment = (whole body mass) x (mass fraction for ith segment from the
anthropometrics.dat file)

xi = the x-coordinate of the center of mass for the ith segment with respect to the calibration
origin

N = the number of body segments

The parameters analyzed were:
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Hausdorff Distance Dynamic Time Warping

n
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Subject’s trajectory, P

Subject’s trajectory, A

Reference trajectory, Q

Reference trajectory, B

d(A,B) minimum distance from A to B
d(B,A) minimum distance from B to A

Fig 1. Explication of Hausdorff distance and dynamic time warping between a subject’s trajectory and
the reference trajectory for a TUG sub-task.

doi:10.1371/journal.pone.0149757.9001

> time to perform the Go, Turn and Return sub-tasks of the TUG, and total TUG time
> length of the COM trajectory, HD and DTW

The trajectories of each patient and healthy subject were compared with the reference trajec-
tory, defined as the mean of the healthy subjects’ trajectories which were time-resampled [16].
Trajectory length was calculated with the following equation 2

Trajectory length = Z v/ (x — x,v)Q + Wi — )’i)2

HD corresponds to the geometric analysis of the trajectory. Each point of the considered
subject’s trajectory is assigned to the closest point of the reference trajectory and conversely,
each point of the reference trajectory is assigned to the closest point of the considered subject’s
trajectory (Fig 1). HD is the greatest of all the distances from a point in one set (A) to the clos-
est point in the other set (B). HD is thus sensitive to corner points.

HD was calculated with the following equation 3.

HD (A, B) = max {d(A, B),d(B,A)}

where d(A,B) and d(B,A) are the direct (minimum) Euclidean distances between two sets, A
and B [23].

The result is in cm. The greater the distance, the higher the deviation from the reference
trajectory.

DTW is a spatio-temporal analysis which corresponds to the path of cumulative distances
that minimize the warping cost (pair of matching points) of two time series, P and Q [42]. The
algorithm first calculates the distance between each point of the subject’s trajectory and refer-
ence trajectory and then searches an optimal matching (minimal cost) between sequence points
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(a point of a sequence is associated with one or more points of the other sequence) (Fig 1).
DTW correspond to the optimal path that matches the point sequences.
DTW is calculated with the following equation 4.

DTW (Q7 P) = min |:Z d(%kvpik):|

where d(gx pi) is the Euclidean distance between two points in the Q and P series [43]. The
result is in arbitrary units. Higher values indicate a larger deviation from the reference trajectory.

HD and DTW are complementary parameters since HD relates to a particular point of the
trajectory (the greatest of all the distances, for the sub-task analyzed) while DTW considers the
trajectory as a whole (the sum corresponding to the optimal path between the two trajectories,
for the sub-task analyzed).

All parameters were calculated for the global TUG and for each sub-task using Matlab
(Mathworks, Inc.).

Subjects also underwent a clinical examination as detailed in Table 3.

Statistical analysis

Performance time, DTW and HD were calculated for each sub-task of the TUG (Go, Turn and
Return) as well as the total trajectory. Trajectory length was computed for the total TUG trajec-
tory. As the parameters were not all normally distributed, medians and quartile ranges are pre-
sented and non-parametric tests were used. Mann-Whitney tests were used to compare patients
and healthy subjects, fallers and non-fallers and patients with right and left hemisphere stroke. A
Bonferroni correction was used (since four repeated comparisons were carried out) with an
adjusted p of 0.0125. A logistic regression was performed for each sub-task of the TUG to assess
the additional variance of the dependent measure (stroke/no stroke) accounted for by DTW and
HD above and beyond that accounted for by TUG time and nuisance variables (sex, age, body
mass index). DTW and HD were added together in the regression model. Correlations between
the BBS scores and trajectory parameters were tested with Spearman’s correlation for both the
patients with stroke and healthy subjects, and for each sub-task (p < 0.05 was considered as sig-
nificant). All analyses were performed using Statistica (version 7.1)

Results

Comparison of trajectory parameters between stroke patients and
healthy subjects

Results of the trajectory parameters are presented in Table 4. Fig 2 shows the trajectories of a
patient with stroke and a healthy subject. Trajectory length, HD and DTW of the total TUG

Table 3. Clinical examination.

Impairments and disabilities examined Scale

Spasticity (quadriceps, rectus femoris, hamstring and triceps  Modified Ashworth

surae)

Strength (hip, knee and ankle flexor and extensor) Medical Research Council

Sensation and proprioception of lower limb Nottingham Sensory Assessment

Activities of daily living Barthel index

Walking independence New Functional Ambulation Classification
score

Balance Berg Balance Scale

Balance confidence Activities-specific Balance Confidence
Scale

doi:10.1371/journal.pone.0149757.t003
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Table 4. Trajectory parameters [medians and interquartile ranges Q1;Q3] during the global trajectory and Go, Turn and Return sub-tasks of the

TUG for both groups.
Stroke group Healthy group
Global Go Turn Return Global Go Turn Return
HD (cm) 29.3[21.9;33.3] 22.6 33.0 28.4 19.2 15.1 20.4 22.8
[17.1;28.5] [25.4;42.2] [22.1;37.4] [17.5;23.9]* [10.5;16.7]* [18.7;26.8]* [20.1;27.7]
DTW(arbitrary 12983 4438 5238 5298 9023 3017 2252 4783
unit)  [10576;19958] [3373;6139]  [4344;7844] [3561;7745]  [7522;10969]* [2187;3379]* [1875;2638]*  [3631;6326]
Trajectory length 838,5 - - - 750.1 - -
(cm) [817.7;864.5] [737.7;766.1]*
TUG performance  19.4 [15.9;21.5] - - - 9.9 [9.5;11.5]* - -
(time in sec)

HD Hausdorff distance
DTW Dynamic time warping
TUG Timed Up and Go

* significant difference between Stroke group and Healthy group for the sub-task (p<0.05)

doi:10.1371/journal.pone.0149757.t004
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Fig 3. Trajectory of two characteristic patients with similar performance times (20.7 and 20.8s) but distinct trajectories.
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test were significantly greater in the stroke group (respectively p = 0.000001, p = 0.0001,

p = 0.00004). HD and DTW were significantly greater in the stroke group during the Go
(respectively p = 0.00002, p = 0.0009) and Turn (respectively p = 0.0002, p = 0.000001) sub-
tasks. Both HD and DTW were greater in the patient group showing that, for a given sub-task,
they deviated from the reference trajectory both at an isolated point (assessed with HD) and
during the entire sub-task (assessed with DTW).

Additional information provided by the trajectory parameters

The logistic regressions showed that the variance increased for the Go sub-task when the trajec-
tory parameters were included. Indeed when all variables were included in the model the R?
was 0.56 and when the trajectory variables were not included (model with time and nuisance
variables) the R was 0.39. The results of the predictive factors of the logistic regression for Go
are presented in the appendix (S1 Table). For the Turn and Return sub-tasks, the trajectory
parameters did not provide additional information (not selected in the multivariate model,
p<0.05). Fig 3 presents the trajectory of two characteristic patients with similar performance
times but distinct trajectories, to illustrate the additional information provided by the locomo-
tor trajectory parameters.

Correlation between trajectory parameters and BBS score

There was a significant negative correlation between BBS score and trajectory length, HD and
DTW during the total TUG (r between -0.53 and -0.68, p<0.05,). BBS score was also signifi-
cantly correlated with DTW during the Turn (r = -0.6, p<0.05) but not with HD during this
sub-task. No correlations were found for Go and Return.

PLOS ONE | DOI:10.1371/journal.pone.0149757 February 19,2016 9/14

121



Chapitre 3: Partie expérimentale

e
@ : PLOS ‘ ONE Locomotor Trajectories in Stroke

Comparison of trajectory parameters between fallers and non-fallers

DTW was significantly greater for fallers (n = 8) than non-fallers (n = 21) for the Go sub-task
only (p = 0.005), no differences were found for the Turn, Return or the total TUG. There were
no significant differences between fallers and non-fallers for HD and trajectory length during

the total TUG or each sub-task.

Comparison of trajectory parameters between patients with right and left
hemisphere stroke

There were no differences for the DTW and HD for the Go, the Turn, the Return, the total
TUG or for the total trajectory length between patients with right (n = 17) and left (n = 12)
hemisphere stroke (p>0.05).

Discussion

To our knowledge, this study is the first to analyze locomotor trajectories during oriented-gait
involving curved paths and obstacle circumvention in stroke patients. The aims were i) to ana-
lyze the locomotor trajectories of patients with stroke during the walking and turning sub-tasks
of the TUG using HD and DTW, and to compare them with healthy subjects; ii) to determine
whether trajectory parameters provide additional information to the conventional measure
(performance time); iii) to compare the trajectory parameters of fallers and non-fallers with
stroke and of patients with right and left hemisphere stroke and iv) to evaluate correlations
between trajectory parameters and BBS scores.

The results showed that, compared to healthy subjects, stroke patients had significantly lon-
ger total trajectories and larger deviations from the reference trajectory during the oriented-
gait to the cone (Go) and the turning (Turn) sub-tasks. Lamontagne et al (2010) recently also
found different locomotor trajectories in stroke patients compared to healthy subjects during
overground walking in an environment which provided optic flow [17].

The results of the present study suggest that stroke patients exhibit different locomotor tra-
jectories depending on the requirements of the sub-task. Differences in trajectory parameters
between the patients with stroke and the healthy subjects during the oriented gait to the cone
and the turn sub-tasks suggest that the perception of a visual target, explicitly associated with a
plan to circumnavigateit, impacted the gait trajectories of the patients with stroke for reasons
that remain to be determined.

Furthermore, the results of this study suggest that the analysis of locomotor trajectories is
an interesting approach to the analysis of gait in patients with stroke, providing additional
information to that of the conventional timed performance of specific locomotor tasks. The
assessment of trajectory parameters complements timed performance, providing a more com-
plete understanding of locomotor tasks in patients with stroke. This is supported by the results
of the logistic regression analysis. Further studies are needed to determine to what extent
patients with similar performance times differ in locomotor trajectory, and the factors that
influence these differences.

Longer and more deviated trajectories were significantly related to poor balance during the
turn sub-task. Moreover, the trajectories of the faller group were significantly more deviated
than those of the non-faller group during the oriented-gait to the cone (Go). The patients’ gait
parameters differed significantly from those of the healthy subjects during the oriented gait to
the cone and the Turn. These sub-tasks both challenge stability. In contrast, the Return
appeared to be less challenging since there were no significant differences between the parame-
ters of the patients and healthy subjects, or of the fallers and non-fallers. Thus the Go and Turn
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appear to be the most challenging sub-tasks of the TUG test. Hicheur et al (2007) also found
that “complex” locomotor trajectories (with a large turn amplitude) induce greater deviations
from the mean than “simple” trajectories (with a smaller amplitude turn) in healthy subjects
[16]. In the present study, the HD and DTW values of the stroke group were both greater than
the values of the healthy subjects during the Go and Turn sub-tasks, revealing that deviations
from the trajectory occurred throughout these sub-tasks and not only at an isolated point. It is
possible that these larger deviations of trajectories throughout the obstacle circumvention task
and the preceding phase compensate for instability. Our results are in accordance with these
obtained in other patient groups. Older adults also increase the spatial margin when walking
through apertures in comparison with young subjects [44]. Similarly, MacLellan and Patla
(2006) showed that the locomotor trajectories of healthy subjects are modified proactively and
retroactively when walking on a foam mat compared to overground. They suggested that these
modifications of the locomotor strategy probably minimize threats to stability [45]. Maintain-
ing a consistent but minimum spatial margin between an obstacle and the self has been sug-
gested as one of the dominant control parameters to maintain balance and avoid perturbation
[46]. However, the hypothesis that trajectory deviations could compensate for instability can-
not be affirmed by our results and further studies will be necessary to confirm or infirm this.

Finally, we expected to find differences in the trajectories of patients with right and left
hemisphere stroke since right hemisphere stroke may alter the perception of body verticality
[18]. However, our results showed that there were no differences, suggesting either that there
were no significant differences between our two groups of participants in the subjective vertical
(which we did not measure) or that alterations in the subjective vertical did not affect the loco-
motor trajectories during the TUG test in this sample of patients with moderate to good recov-
ery. Nevertheless this assumption should be tempered since the distribution of patients with
right and left hemisphere strokes was slightly asymmetrical (twelve patients with left stroke
and seventeen with right stroke).

Limits and perspectives

The patients included in this study had mild impairments; therefore caution must be taken
regarding generalization of the results. The lack of difference between patients with right and
left hemisphere stroke should also be interpreted with caution since we did not carry out a spe-
cific assessment of subjective vertical and cognitive functions relating to spatial perception (e.g.
hemi-spatial neglect). Further studies designed to assess the influence of perception on trajec-
tory would be interesting. The analysis of the trajectories of the faller patients was not our ini-
tial objective which explains why this sub-group was small. This limits the interpretation of the
data for the discrimination of fallers and non-fallers, however these preliminary results suggest
that the analysis of trajectory parameters may be a relevant approach to address this issue. Fur-
ther studies specifically designed to fulfil this objective are nevertheless necessary. It would also
be interesting to study whether locomotor trajectories are influenced by sensory perturbations
in patients with stroke. Moreover locomotor trajectory analysis could be an interesting
approach to assess the impact of medical treatment (such as botulinum toxin), surgical treat-
ment or rehabilitation on “real-life gait” instead of conventional straight-line gait analysis.

Conclusion

This study presents an innovative approach to the quantitative analysis of locomotor trajecto-
ries in patients with stroke during oriented-gait and obstacle circumvention, based on the
widely used TUG test. This approach complements timed performance since it objectively
quantifies locomotor trajectory and provides additional information regarding gait alterations
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in the presence of an obstacle. We evaluated parameters which quantified deviation from a ref-
erence trajectory and found that the trajectory of patients with stroke was more deviated than
that of healthy subjects during the turn and the phase preceding the turn. No differences were
found between patients with right and left hemisphere stroke. Comparison of faller and non-
faller patients also showed that trajectory parameters differed during the phase preceding the
turn. These results suggest that assessing the locomotor trajectory in addition to timed perfor-
mance during complex locomotor tasks such as those assessed during the TUG test (i.e prepar-
ing to circumnavigate an obstacle and turning) might be relevant in patients with stroke and
might also provide a basis for estimation of fall risk.

Supporting Information

S1 Table. Logistic regression for the Go sub-task of the TUG: predictive factors. Caption: 1*
reference value; OR odds ratio, CI confidence interval. NS non-significant
(DOCX)
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Les résultats de cette étude ont montré que, comparativement aux sujets sains, la trajectoire
des patients hémiparétiques était plus longue globalement et, plus déviée de la trajectoire de référence
lors du demi-tour et de la phase de marche orientée Aller, précédant le contournement du céne. Notre
hypothéese était validée pour ces deux phases, mais aucune différence n’a été retrouvée entre les deux
populations pour la phase retour.

D’autre part, une déviation plus grande était retrouvée au cours de la phase aller pour les patients
chuteurs comparativement aux patients non chuteurs, mais aucune différence n’était retrouvée entre
les patients ayant été victimes d’'un AVC hémisphérique droit ou gauche.

Par ailleurs, une déviation plus grande de la trajectoire était associée a un faible score a la BBS
lors de la phase du demi-tour.

Cette étude montre I'intérét d’analyser les trajectoires locomotrices qui peuvent étre, chez
les patients hémiparétiques, plus ou moins déviees d’une trajectoire de référence selon 'activité
locomotrice concernée. De plus, certains patients ayant la méme performance chronométrique au TUG
présentent une trajectoire locomotrice différente. Ceci confirme I’hypothése selon laquelle I'organisation
des patients peut étre différente de celle des sujets sains lors des phases de navigation du TUG. Ces
résultats suggerent également que les patients hémiparétiques et les sujets sains pourraient utiliser des
stratégies différentes pour réaliser les taches de navigation lors de ce test.

A lissue de cette étude, il semble intéressant d’envisager les facteurs cliniques explicatifs de ces
déviations de trajectoire chez les patients hémiparétiques.
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Résultats complémentaires: Corrélations entre les données cliniques des patients hémiparétiques
et les paramétres de trajectoire

Contexte

’étude 4 montrait une déviation de la trajectoire locomotrice des patients hémiparétiques par
rapport a une trajectoire de référence (définie par une trajectoire moyenne de sujets sains) lors des phases
de marche aller et de demi-tour du TUG. Cette étude mettait également en évidence I'existence d’une
corrélation entre les déficits d’équilibration des patients et la déviation de leur trajectoire locomotrice lors
de la phase du demi-tour. Il est par ailleurs connu que les performances de marche sont dépendantes
des déficits sensitivo-moteurs chez les patients hémiparétiques. Les troubles sensitifs, la présence de
spasticité, les déficits moteurs et la confiance que les patients ont en leur équilibre peuvent également
expliquer les déviations de trajectoires lors du TUG.

L’objectif de cette analyse complémentaire était d’étudier les liens entre les parametres de la
trajectoire locomotrice au cours des phases aller, demi-tour et retour du TUG et au cours du TUG
complet et, les données issues du bilan clinique chez les patients hémiparétiques. Nous émettions
'hypothése que les patients présentant les atteintes cliniques les plus séveres auraient le plus de
déviations de leur trajectoire locomotrice.

Méthode

Les parameétres de déviation de la trajectoire (DTW et DH) et la longueur totale de la trajectoire
des vingt-neuf patients hémiparétiques au cours des phases de marche orientée et de demi-tour du
TUG (réalisé en condition standardisée) ont été corrélés a la spasticité, a la commande motrice, a
la sensibilité superficielle et profonde, a la confiance que le patient a en son équilibre lors d’activités
diverses et a la peur de chuter de ces mémes patients.

Les parameétres cliniques étudiés étaient les suivants :

- La spasticité a été évaluée par I'échelle d’Ashworth modifiée et le score global correspondait a
la somme des scores obtenus lors de I'évaluation des muscles fléchisseurs et extenseurs de genou et
de cheville du coté parétique.

- La commande motrice a été évaluée par I’échelle Medical Research Council (MRC) et le score
global correspondait a la somme des scores obtenus lors de I'évaluation des muscles fléchisseurs et
extenseurs de hanche, de genou et de cheville du c6té parétique.

- La sensibilité superficielle a été évaluée sur la plante de pied et la sensibilité profonde a été
évaluée au gros orteil par le Nottigham sensory assessment.

- La confiance du patient en son équilibre a été évaluée par I’ Activities-specific Balance Confidence
(ABC).

Les parameétres de trajectoire DTW et DH ont été quantifiés selon la méme méthode que celle
décrite dans I'article précédent
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Les parametres de trajectoire des vingt-neuf patients hémiparétiques au cours des phases
de marche orientée et de demi-tour du TUG (réalisé en condition standardisée) ont été corrélés a la
spasticité, a la commande motrice, a la sensibilité superficielle et profonde, au score a la BBS et a la
confiance que le patient a en son équilibre lors d’activités diverses. Les données n’étant pas toutes
continues, des corrélations de Spearman ont été effectuées avec un seuil de significativité retenu a
p<0.01 (correction effectuée : 0.05 / 5 paramétres) et la force de la corrélation était interprétée d’apres
Domholdt (Domholdt, 2000).

Résultats

Les scores aux évaluations clinigues ont été précédemment présentés dans le tableau 5. Les détails
des scores moteurs, sensitifs et fonctionnels sont présentés dans les annexes 2, 3 et 4. Les résultats
des corrélations sont présentés dans le tableau 7.

Tableau 7 : Corrélations entre les parametres DH et DTW de déviation de la trajectoire pour chaque
phase analysée et les données cliniques des patients hémiparétiques.

-0,17 -0,31 -0,37 -0,37

_ -0,12 -0,25 -0,28 -0,28 -0,41
_ 0,13 -0,34 -0,39 -0,34 -0,32
_ 012 00 o0 o7 013
_ -0,08 -0,03 -0,08 -0,09 -0,08
_ -0,13 -0,17 -0,56* -0,45 -0,29
_ -0,01 -0,26 -0,48* -0,42 -0,32
_ o0 008 o1 040 01
_ -0,24 -0,12 -0,32 -0,36 -0,40

DH distance de Hausdorff

DTW déformation temporelle dynamique

LLa somme des scores de spasticité correspond aux muscles quadriceps, ischio-jambiers et triceps sural (évalué avec 'échelle
d’Ashworth modifiée)

La somme des scores de MRC (motricité volontaire) correspond aux fléchisseurs et extenseurs de la hanche, du genou et de la
cheville (évalués avec I'échelle Medical Research Council, MRC)

La pression de la plante de pied et la sensibilité profonde (des orteils dans ce tableau) ont été évaluées avec le Nottigham
sensory assessment

BBS, Berg Balance Scale, évaluant I'équilibre (score 0/ 56)

ABC, Activities-specific Balance Confidence, évaluant la confiance que le patient a en son équiliore au cours de diverses
activités quotidiennes (score 0/ 100%)

* Corrélation significative a p<0.05 (corrélation de Spearrman)
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Les déficits de sensibilité superficielle étaient significativement négativement corrélés avec la
distance de Hausdorff au Demi-tour (corrélation modérée selon Domholdt) et avec le DTW au demi-tour
(corrélation faible selon Domholdt) (Domholdt, 2000) Les autres données cliniques (sensibilité profonde,
motricité volontaire, spasticité et confiance du patient en son équilibre) n’étaient pas significativement
corrélées avec les parameétres de trajectoire.

Précisons que la corrélation entre la déviation de la trajectoire et les troubles sensitifs superficiels
ne concernait que la phase du demi-tour et pas les phases de marche orientée.

Discussion

Notre hypothése d’une déviation plus importante de la trajectoire locomotrice pour les patients
présentant les anomalies cliniques les plus importantes était validée pour les scores de sensibilité
superficielle mais ne I'était pas pour les scores de motricité volontaire, de spasticité et de confiance en
son équilibre. Ces facteurs cliniques accompagnent les déficits d’équilibration soulignés dans I'étude 4
pour expliquer la déviation de trajectoire des patients hémiparétiques. Ainsi une déviation plus grande
était associée a un faible score a la BBS lors de la phase du demi-tour. La trajectoire au cours de
cette phase de demi-tour apparait donc influencée par les capacités d’équilibre des patients, elles-
mémes probablement en rapport avec les déficits de la sensibilité superficielle alors que les déficits de la
sensibilité profonde, de la motricité volontaire et la spasticité ne semblent pas intervenir. Rappelons que
la précédente étude complémentaire montrait une association entre les parametres biomécaniques de
stabilité et le score clinique des capacités d’équilibration sans mettre en exergue un symptéme sensori-
moteur particulier. La trajectoire du demi-tour lors de la tdche de navigation apparait donc influencée
par la stabilité et particulierement par les déficits sensitifs superficiels bien que ces symptoémes ne
s’averent pas spécifiguement impliqués dans la gestion des parametres de déplacement du COM.
L’origine clinique de ces liens entre la trajectoire et la stabilité reste par conséquent a mieux documenter.

Par ailleurs, cette phase du demi-tour était également concernée par I'association entre les
parametres de stabilité explicatifs de la performance (% de phase du cycle de marche) et les déficits
de la motricité volontaire (résultats de I'étude 1). Au final, la stabilité apparait étre I'élément central de
la régulation du demi-tour lors du TUG avec des troubles de la sensibilité superficielle influencant la
trajectoire locomotrice des patients et les troubles de la motricité volontaire influencant leur performance.
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L’ objectif principal de ce travail était d’évaluer et de quantifier par analyse tridimensionnelle, chez
des patients hémiparétiques, une tache de navigation impliquant des déplacements locomoteurs
frequemment effectués dans la vie quotidienne. Le test du Timed Up and Go (TUG), comprenant
notamment des phases de marche orientée vers un but et la réalisation d’'un demi-tour, répondait
particulierement a cette prise en compte des déplacements quotidiens du patient dans son environnement.
Ce travail montre tout d’abord qu’une évaluation instrumentée du TUG par systéeme opto-électronique
est une approche possible pour I'analyse quantifieée biomécanique des phases de marche et du demi-
tour du TUG de patients hémiparétiques. Cette analyse apporte par ailleurs de nouvelles données, se
positionnant a la jonction de deux approches routinieres conventionnelles complémentaires : d’une
part le test du TUG, une évaluation clinique impliquant des taches variées de locomotion rencontrées
au quotidien, mais n’aboutissant qu’a une performance chronomeétrique globale et d’autre part, ’AQM,
une analyse instrumentale quantifiée aboutissant a de multiples parameétres évalués de maniere précise
et permettant une analyse approfondie du comportement biomécanique locomoteur du patient,
mais n’impliquant qu’une marche en ligne droite sans but a atteindre, ce qui correspond peu aux
déplacements effectués au quotidien.

Les 4 études de ce travail permettent une meilleure compréhension du comportement
biomécanique des patients hémiparétiques comparativement a des sujets sains au cours de taches de
navigation inclues dans le TUG (phases de marche orientée Aller et Retour et phase du Demi-tour). Les
parametres biomécaniques analysés étaient les parameétres spatio-temporels, la cinématique articulaire,
le MFC, les déplacements médio-latéraux et verticaux du COM, la longueur totale de la trajectoire du
COM et la déviation de la trajectoire du COM. Les résultats de ces différentes études montrent que ces
parametres étaient i) différents entre les patients hémiparétiques et les sujets sains, mais également i)
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entre les différentes phases du TUG, pour une méme population et entre les deux populations. Ainsi
la nature de la tache locomotrice impliquait des spécificités pour chacune des populations étudiées.
L'analyse des parametres biomécaniques a ainsi permis de caractériser 'organisation des patients
hémiparétiques par rapport aux sujets sains et d’envisager la ou les stratégie(s) mise(s) en place par ces
patients pour effectuer ces taches de navigation.

Dans un premier temps les éléments permettant de caractériser I'organisation des patients
hémiparétiques seront abordés au moyen de criteres de performance, de critéres explicatifs de
cette performance et de critéres organisationnels. Dans la seconde partie de cette discussion, une
interprétation de la ou des stratégie(s) mise(s) en place par les patients hémiparétiques lors de la
réalisation des taches de navigation sera proposée. Enfin, les intéréts cliniques issus de ce travail seront
présentés.

I Caractérisation de I’organisation

.1 Critéres de performance

Parmi les paramétres biomécaniques analysés, deux d’entre eux sont représentatifs de la
performance des participants lors des différentes taches du TUG : la performance chronométrique
et la longueur totale de la trajectoire locomotrice. Le TUG est un test clinique, rapide de passation,
dont la performance correspond a la durée d’exécution de I'ensemble des activités le composant
(Podsiadlo and Richardson, 1991), (Flansbjer et al., 2005). Cette performance chronométrique lors du
TUG est reconnue aujourd’hui comme un bon indicateur de la fonction locomotrice (Ng and Hui-Chan,
2005), (Flansbjer et al., 2005). Les résultats de nos études mettent en évidence une performance
chronométrique réduite chez les patients hémiparétiques comparativement aux sujets sains, pour la
totalité du TUG et pour chacune des phases analysées. Ces résultats confirment ceux de précédentes
études (Ng and Hui-Chan, 2005), (Hollands et al., 2010), (Faria et al., 2012).

La longueur totale de la trajectoire du COM lors du TUG traduit la distance totale parcourue par
les participants. Nos résultats montrent une longueur significativement plus importante pour les patients
hémiparétiques par rapport aux sujets sains, avec en moyenne 1 metre supplémentaire parcouru
(soit environ +13%). Cette donnée nous semble intéressante, tout comme la distance de marche
régulierement évaluée chez les patients hémiparétiques en routine clinique lors d’une marche en ligne
droite, en complément de I’évaluation de la vitesse (Eng and Fang Tang, 2007), (Dunn et al., 2015).
Ainsi, nos résultats montrent, pour la premiere fois, qu’un test rapide de passation, le TUG, permet
de mettre en évidence une augmentation de la distance de marche chez des patients hémiparétiques
alors que la littérature souligne la diminution de la distance parcourue par ces patients lors du test de 6
minutes en ligne droite (Dunn et al., 2015). Précisons néanmoins que les distances obtenues a I'issue
de ces tests sont complémentaires explorant des éléments différents avec une consigne de parcourir le
plus de distance possible pour le test de 6 minutes et, évaluer la distance spontanée lors d’une tache
de navigation a vitesse de confort avec un point de départ et un point d’arrivée imposés pour le TUG.

Les résultats des patients hémiparétiques montrent une forte corrélation positive entre ces deux
parametres de performance que sont la durée de la tache et la distance parcourue (r=0.79, p<0.05).
Ainsi, la longueur de la trajectoire était d’autant plus importante que les patients avaient une durée
d’exécution du TUG importante. L'analyse des autres parametres biomécaniques étudiés va nous
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permettre de mieux comprendre les mécanismes impliqués dans cette performance. On peut par
exemple s’interroger sur la cause de I'augmentation de la longueur de la trajectoire (distance parcourue)
chez les patients hémiparétiques alors que la tache impose un point départ, un point d’arrivée et une
cible située a 3 metres. On peut également se demander par quels mécanismes les patients aboutissent
a leur performance chronométrique et s'’ils mettent en place une stratégie particuliére en lien avec les
troubles qu’ils présentent.

La performance chronométrique étant validée et reconnue comme le critere d’évaluation de la
performance lors du TUG (Podsiadlo and Richardson, 1991), (Flansbjer et al., 2005), nous avons fait
le choix de I'utiliser comme le critere de performance principal dans cette discussion (et dans les 2
premieres études relatives a la performance lors du TUG).

1.2 Critéres explicatifs

La premiere étape de la compréhension des mécanismes aboutissant a la performance
chronométrique des patients hémiparétiques est de mettre en évidence les parameétres cinématiques
majoritairement impliqués dans chacune des taches de navigation du TUG. La mise en évidence de ces
parametres chez les patients hémiparétiques pourrait permettre de mieux comprendre leur organisation
lors les taches de navigation du TUG. Cette méme analyse chez les sujets sains pourrait permettre de
déterminer si I'organisation de ces deux populations repose sur des mécanismes similaires ou différents
et, s’ils sont similaires, de déterminer si leur modulation respective est identique ou différente.

[.2.1 Paramétres spatio-temporels et de la cinématique articulaire explicatifs de la
performance pendant les phases de marche orientée

Pour les patients hémiparétiques et les sujets sains, les mémes parametres spatio-temporels
étaient les plus explicatifs de la performance des phases de marche orientée vers un but (un cone a
contourner ou une chaise pour s’y asseoir). Ainsi, la longueur de pas et la cadence, expliquaient la
variance de la performance chronométrique pour les deux populations, bien que la modulation de la
longueur de pas différait d’'une population a I'autre (résultats des études 1 et 2). Ces résultats mettent
donc en évidence une performance chronométrique diminuée aux phases de marche orientée chez
les patients hémiparétiques par rapport aux sujets sains, expliquée non pas par une différence des
parameétres cinématiques mis en jeu mais par une modulation différente des mémes mécanismes. La
cadence et lalongueur de pas étaient ainsi modulées différemment pour assurer la meilleure performance
chronométrique possible lors des taches de marche orientée. La vitesse de marche étant le produit de
la cadence et de la longueur de pas, il apparait I€gitime que ces parametres soient explicatifs de la
performance chronométrique des phases de marche orientée du TUG. Ce résultat est par conséquent
en accord avec de précédentes études ayant mis en évidence un lien entre la vitesse de marche et la
performance chronomeétrique globale lors du TUG (Ng and Hui-Chan, 2005), (Flansbjer et al., 2005).

Notons qu’aucun parametre de la cinématique articulaire étudié ne s’est avéré significativement
explicatif de la performance. Pourtant la majorité de ces parametres était réduits chez les patients
hémiparétiques comparativement aux sujets sains lors des différentes phases du TUG et, plusieurs
études ont souligné I'existence de liens entre la vitesse de marche en ligne droite et la cinématique
articulaire chez les patients hémiparétiques (Kim and Eng, 2004), (Lamontagne and Fung, 2004).
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Précisons cependant que les paramétres cinématiques articulaires analysés dans nos études ne I'ont
été que dans le plan sagittal, ce qui pourrait constituer une limite. En effet, on ne peut exclure que des
parametres cinématiques analysables dans d’autres plans puissent interférer avec la performance aux
différentes phases du TUG chez des patients hémiparétiques. Ainsila cinématique d’abduction/adduction
et de rotation de hanche est connue pour jouer un réle non négligeable dans la vitesse de marche des
patients hémiparétiques (Kim and Eng, 2004). Il apparait donc qu’une analyse complémentaire de
ces parametres pourrait s’avérer intéressante pour encore mieux comprendre comment les patients
hémiparétiques modulent leur vitesse et donc leur performance. D’autre part, notre méthodologie ne
permettait pas I'étude de la cinétique, qui semble aussi jouer un rdle important dans la vitesse de
marche. Le moment en flexion de hanche et les puissances articulaires a la hanche, au genou et a la
cheville parétique sont également connus pour étre significativement corrélés avec la vitesse de marche
chez les patients hémiparétiques (Olney et al., 1994), (Kim and Eng, 2004). Il en ressort donc qu’une
analyse complémentaire des parametres cinétiques de marche lors de la réalisation du TUG pourrait
également contribuer a mieux appréhender la maniére dont les patients hémiparétiques modulent leur
performance lors des différentes phases de ce test.

[.2.2 Paramétres spatio-temporels et de la cinématique articulaire explicatifs de la
performance pendant la phase du demi-tour

Les parameétres explicatifs de la performance lors de la phase de demi-tour par contournement d’un
obstacle chez des patients hémiparétiques étaient le pourcentage du cycle de marche passé en phase
de simple appui du cbté parétique et le pourcentage de phase oscillante du c6té non-parétique. Chez
les sujets sains, en revanche, aucun parametre n’était spécifiguement explicatif de la performance lors
de cette phase du demi-tour. Nos résultats mettent donc en évidence une performance chronométrique
diminuée lors de la phase du demi-tour chez les patients hémiparétiques par rapport aux sujets sains,
expliquée par la mise en jeu de parametres cinématiques spécifiques.

Le pourcentage de simple appui du coté parétique et le pourcentage de phase oscillante du coté
non-parétique, explicatifs de la performance chez les patients hémiparétiques, sont reconnus comme
étant le reflet de la stabilité d’un sujet (Lincoln A., 2006), (Suzuki et al., 1999). Ces résultats indiquent,
par conséquent, I'importance de I'équilibration pour les patients hémiparétiques lors de cette phase
de demi-tour. Pour les sujets sains, des études complémentaires pourraient s’avérer pertinentes pour
tenter de mieux comprendre les mécanismes utilisés par ces sujets pour assurer une performance
lors de la phase de demi-tour. La comparaison de la tache a vitesse lente et a vitesse rapide pourrait
possiblement mettre en évidence des parametres explicatifs, ce qui nous renseignerait sur I'organisation
des sujets sains.

Al'instar des phases de marche orientée, notons qu’aucun parametre de la cinématique articulaire
n’était explicatif de la performance chronométrique de la phase de demi-tour. Une réduction de la majorité
des parameétres de la cinématique articulaire était pourtant observée chez les patients hémiparétiques
comparativement aux sujets sains, excepté le pic d’extension de hanche, le pic de flexion de genou et le
pic de flexion plantaire de cheville du cété non-parétique, augmentés chez les patients hémiparétiques.
Le fait que le coté non-parétique corresponde a I'extérieur de la courbe lors du demi-tour (consigne de
tourner du c6té parétique) pourrait expliquer cette majoration d’amplitude pour le membre inférieur situé

a I'extérieur, Cependant la consigne était la méme pour les sujets sains (consigne de tourner du coté
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non-dominant) et nos résultats montrent que les amplitudes de ces parameétres étaient supérieures pour
le coté non-parétique des patients hémiparétiques comparativement aux amplitudes du coté dominant
des sujets sains. L’hypothese d’une augmentation de ces paramétres du cdté non-parétique pour
compenser les restrictions d’amplitudes du c6té parétique afin de maintenir la meilleure performance
possible peut étre émise. De plus, ces trois parametres exagérés du cété non-parétique lors du demi-
tour sont connus comme particulierement incriminés lors d’une marche en courbe effectuée par des
patients hémiparétiques, que le membre parétique soit en intérieur ou en extérieur de courbe (Duval
et al., 2011). D’autre part, ces phénomeénes de compensation par le c6té non-parétique des déficits
du cb6té parétique pour une marche efficiente chez les patients hémiparétiques ont préalablement été
rapportés (Raja et al., 2012). En effet, une exagération de la flexion de hanche et de genou, de la flexion
plantaire de cheville, de la propulsion a été observée du cbté non-parétique par rapport a des sujets
sains marchant a la méme vitesse lors d’'une marche en ligne droite (Hutin et al., 2012), (Chen et al.,
2005), (Raja et al., 2012). Ce phénomeéne de compensation du membre parétique par le membre non-
parétique semble donc indépendant de la tache locomotrice. De plus, ces trois parametres sont connus
pour étre associés a la vitesse de marche en ligne droite chez les patients hémiparétiques (Lamontagne
and Fung, 2004), (Nadeau et al., 1999b). Précisons que nos résultats montraient une augmentation
de ces parameétres du cbté non-parétique lors du demi-tour mais que seul le pic de flexion genou du
c6té non-parétique était augmenté lors des phases de marche orientée, par rapport aux sujets sains. |l
semblerait donc que des stratégies de compensation par le coté non-parétique existent lors de taches
de navigation, déja identifiées lors de la marche en ligne droite, mais que les modalités de celles-ci
different selon la nature de la tache.

Pour conclure, les critéres explicatifs de la performance chronométrique pointent une
organisation spécifique de la tache considérée, pour les patients hémiparétiques et pour
les sujets sains (pour une population donnée, les paramétres explicatifs sont différents
selon la tiche considérée).

D’autre part, la performance chronométrique et la plupart des paramétres
cinématiques sont diminués chez les patients hémiparétiques par rapport aux sujets sains
pour les 3 phases de navigation du TUG (marche orientée a I'aller et au retour et demi-
tour). Cependant, cette réduction de performance commune aux 3 phases ne s’explique
pas de la méme maniére, mais de fagon spécifique selon la tdche considérée (pour une
tadche donnée, les paramétres explicatifs sont différents selon la population). Ainsi les
taches de marche orientée vers une cible étaient contrélées par les mémes paramétres
(bien que modulés de fagon différente) chez les patients hémiparétiques et les sujets
sains ; a I'inverse la tache de demi-tour par contournement d’un obstacle impliquait une
organisation spécifique, différente pour les patients hémiparétiques par rapport aux sujets
sains.
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1.3 Critéres organisationnels

La seconde étape de la compréhension des mécanismes impliqués dans la performance
chronométrique des patients hémiparétiques repose sur I’'analyse de I’organisation globale utilisée pour
les deux populations étudiées. Cette organisation globale des patients peut étre appréhendée par
I’étude des déplacements du COM traduisant les critéres de stabilité et de trajectoire locomotrice et par
I‘étude du MFC (résultant de la cinématique), reflet du critére de stabilité.

1.3.1 Stabilité

1.3.1.1 Pendant les phases de marche orientée

Les patients hémiparétiques présentaient des déplacements médio-latéraux du COM plus
importants que les sujets sains lors des phases de marche orientée. Ceci traduit une difficulté a maintenir
la stabilité pour les patients, comme le suggere la littérature (Chou et al., 2004), (Catena et al., 2007),
(Detrembleur et al., 2003). Les sujets sains, quant a eux, minimiseraient leurs mouvements latéraux afin
d’optimiser le déplacement majoritairement antérieur lors de ces phases Aller et Retour (Staszkiewicz
et al., 2010).

Concernant le MFC lors des phases de marche orientée, celui-ci était augmenté chez les patients
hémiparétiques par rapport aux sujets sains. Il eut été légitime de penser que le MFC serait diminué du
coté parétique chez les patients ayant subi un AVC, compte tenu des déficits de flexion de hanche, de
genou et de cheville (observés lors de I'’étude 1). Cependant, nos résultats indiquent une augmentation
du MFC du cb6té parétique, ce qui est en accord avec une récente étude (Little et al., 2014). En effet,
a l'instar de nos résultats, les déficits (ou I'absence de différence avec les sujets sains) de flexion au
membre inférieur n’expliquaient pas I'augmentation du MFC observé par ces auteurs (Little et al., 2014).
Ceci suggere la mise en jeu d’autres parametres biomécaniques tels que les mouvements du pelvis
et du membre parétique dans les plans frontal et transversal, non investigués dans nos études, et qui
pourraient expliquer 'augmentation du MFC. En effet, plusieurs auteurs soulignent la présence d’une
élévation du pelvis et d’une abduction du membre inférieur du coté parétique lors de la phase oscillante
(Kerrigan et al., 2000), (Kim and Eng, 2004), (Chen et al., 2005). Cette augmentation de I'obliquité vers
le haut du bassin associée ou non a une augmentation de I'abduction de hanche pourrait permettre
d’augmenter la distance entre la pointe du pied et le sol et de fait se traduire par une augmentation
du MFC. Cette augmentation du MFC du c6té parétique retrouvée chez les patients, associée a une
altération de la cinématique du c6té parétique dans le plan sagittal, suggere 'existence d’une stratégie
(dans le plan frontal et/ou transversal) ayant pour objectif d’assurer une marge de sécurité et d’éviter
un accrochage du pied parétique avec le sol. Par ailleurs I'absence de corrélation entre le MFC du
coté parétique et les déficits sensitivomoteurs (résultats de I'étude 3) supporte cette hypothese d’une
stratégie d’adaptation plutét qu’une conséquence des déficits sensitivomoteurs inhérents a I’AVC.
Nous pouvons supposer que cette augmentation du MFC aurait pour but de limiter le risque de chute,
sachant que les patients hémiparétiques sont considérés a haut risque de chute, car de petits écarts
d’amplitude de flexion dorsale de cheville et/ou de flexion de genou du cbété parétique permettent
de différencier les patients hémiparétiques qui trébuchent de ceux qui ne trébuchent pas (Burpee
and Lewek, 2015). Ceci étant, bien que nos résultats ne mettaient pas en évidence de différence

significative pour le MFC entre les patients chuteurs et les non-chuteurs, cette hypothése demeure
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valide, car notre échantillon de patients chuteurs était trés faible par rapport aux patients non-chuteurs
ce qui limite la possibilité de mettre en évidence une différence statistiquement significative. Des études
complémentaires portant sur un plus grand nombre de patients chuteurs semblent donc indispensables
pour confirmer ou infirmer cette hypothese.

1.3.1.2 Pendant la phase du demi-tour

Les patients hémiparétiques présentaient des déplacements verticaux du COM plus importants
que les sujets sains lors de la phase du demi-tour. Cette augmentation est considérée comme une
difficulté a maintenir I’équilibre (Perry, 1992), (Tucker et al., 1998), (Detrembleur et al., 2003). En effet, il a
été montré que les sujets sains minimisent ces déplacements pour une marche optimale et une dépense
énergétique minimale (Saunders et al., 1953), (Perry, 1992). Une augmentation des déplacements
verticaux du COM a également été observée chez des patients vestibulaires, instables, lorsqu’on leur
impose une vitesse de marche (Tucker et al., 1998). De plus, nos résultats montraient qu’une vitesse
verticale du COM importante lors du demi-tour permet de discriminer les patients chuteurs des non-
chuteurs. Nous pouvons émettre I’hypothése qu’un défaut de stabilité lors de tdches complexes de
navigation telles qu’un demi-tour peut étre a I'origine de chute chez des patients hémiparétiques. En ce
sens, Hyndman et al (2002) ont interrogés des patients hémiparétiques sur les circonstances de leurs
chutes (Hyndman et al., 2002). Les patients rapportent fréquemment une perte d’équilibre lorsqu’ils
réalisent un demi-tour comme principale cause de leur chute (Hyndman et al., 2002).

Alinverse des déplacements verticaux, les déplacements médio-latéraux du COM étaient réduits
chez les patients hémiparétiques, comparativement aux sujets sains, lors de la phase du demi-tour.
Lors d’'une marche orientée vers I'avant, les mouvements du COM dans le plan médio-latéral sont
considérés comme le reflet d’une difficulté a maintenir la stabilité du sujet (Chou et al., 2004), (Catena et
al., 2007), (Detrembleur et al., 2003). Or le demi-tour est un mouvement de marche particulier induisant
une rotation pour orienter le corps vers une nouvelle direction (Hollands et al., 2001). Dans ce contexte,
les déplacements du COM dans le plan médio-latéral peuvent étre envisagés comme la composante
principale du mouvement, plutét que le reflet de mouvements « parasites » traduisant une difficulté a
maintenir la stabilité. De plus, nos résultats montraient une diminution de la vitesse de marche lors de
la phase du demi-tour, comparativement aux phases de marche orientées, pour les deux populations.
Ceci est en accord avec le ralentissement du déplacement des sujets sains lors d’une réorientation du
corps vers une nouvelle direction de I'espace (Patla et al., 1999). Ceci est également cohérent avec
I'augmentation de la durée et du nombre de pas chez des patients hémiparétiques réalisant le demi-
tour du TUG, comparativement a des sujets sains (Lam and Luttmann, 2009).

Concernant le MFC lors de cette phase du demi-tour, sa valeur du coté parétique n’était pas
différente de celle des sujets sains et était supérieure a la valeur du MFC du c6té non-parétique. De plus,
le MFC était encore plus augmenté lors de cette phase du demi-tour par rapport a la phase de marche
Aller, pour les patients hémiparétiques et les sujets sains. Cette augmentation est donc un mécanisme
commun aux deux populations. Des modifications du MFC ont ainsi été précédemment retrouvées
chez des sujets sains dans un contexte de situations complexes ou induisant de l'instabilité (Heasley
et al., 2004), (Gates et al., 2012), (Begg et al., 2007). Ce phénomene fait donc figure d’adaptation a la
complexité de la tache.
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Rappelons que le seul parameétre clinique corrélé aux paramétres biomécaniques du COM et du
MFC était le score a la BBS avec une amplitude de rotation au cours du demi-tour (COM dans le plan
médio-latéral) d’autant plus élevée que le score des patients a la BBS était élevé. Aucun symptéme
sensori-moteur (déficits moteurs, spasticité, déficits sensitifs) n’apparaissait spécifiqguement incriminé
dans l'influence des critéres organisationnels du COM et du MFC.

Pour conclure, les patients hémiparétiques présentent des critéres organisationnels
relatifs a la stabilité différents de ceux des sujets sains lors des phases de marche orientée
et de demi-tour. Ceci concourt a I’explication de la différence de performance entre les
deux populations.

Plus précisément, les patients hémiparétiques présentaient des déplacements du
COM plus importants que les sujets sains dans le plan médio-latéral lors des phases de
marche orientée et dans le plan vertical lors de la phase du demi-tour. Ceci traduit, pour
les patients hémiparétiques, une difficulté a maintenir leur stabilité, sans que celle-ci
ne soit particulierement expliquée par certains symptomes cliniques. D’autre part, une
augmentation du MFC du cété parétique était observée chez les patients hémiparétiques
(par rapport aux sujets sains lors des phases de marche orientée et, au demi-tour par
rapport a la phase Aller pour les patients), de méme qu’une diminution de I'amplitude
et de la vitesse de rotation (COM dans le plan médio-latéral) lors du demi-tour. Ces 2
mécanismes pourraient correspondre a la mise en place de stratégie(s) visant a maintenir
la stabilité des patients hémiparétiques (ce point sera discuté en deuxiéeme partie de la
discussion). L’association entre la vitesse de rotation lors du demi-tour et les scores des
patients a la BBS est en faveur de cette hypothése.

1.3.2 Trajectoire

Parallelement aux criteres organisationnels relatifs a la stabilité, la trajectoire locomotrice est I'autre
critére qui traduit I'organisation globale des patients hémiparétiques lors des taches de navigation du
TUG. Ces patients présentaient une déviation de leur trajectoire locomotrice par rapport a la trajectoire
de référence, pour la phase Aller, préparant le contournement de I'obstacle, et la phase du Demi-tour.
Rappelons que les parameétres cliniques corrélés a ces déviations de la trajectoire étaient la BBS et les
troubles sensitifs superficiels lors du demi-tour, avec d’autant plus de déviation de la trajectoire que ces
troubles étaient importants.

Les modifications de déviation de la trajectoire locomotrice ont précédemment été retrouvées
chez des sujets sains dans un contexte de situations complexes ou induisant de I'instabilité (Hicheur
et al., 2007), (Hackney and Cinelli, 2013). A l'inverse, nos résultats contrastaient avec la tres récente
étude de Hicheur et al (2016) (Hicheur et al., 2016). En effet, ces auteurs ont trouvé des trajectoires
locomotrices spatialement similaires entre des sujets cérébro-lésés (présentant ou non une hémiparésie)
et des sujets sains lorsqu’ils devaient atteindre une cible a partir de trois positions de départ différentes
(induisant des trajectoires plus ou moins curvilignes). La nature de la tache (demi-tour complet vs
trajectoires incurvées) et les caractéristiques des sujets contribuent tres probablement a expliquer cette
différence entre nos résultats et ceux de ces auteurs.
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D’autres études relatant I'analyse de taches de navigation chez des sujets agés, présentant
également des troubles sensori-moteurs et d’équilibre, ont été publiées (Takei et al., 1996), (Gérin-Lajoie
et al., 2006). Takei et al (1996) ont mis en évidence des trajectoires polygonales chez des sujets agés
devant reproduire la trajectoire d’un cercle tracé au sol avec des lunettes opaques apres s’étre entraing
sans lunettes (Takei et al., 1996). A l'inverse, cette trajectoire est quasi superposable au cercle idéal
pour les sujets jeunes. De plus, en condition de double tache, un élargissement du rayon de courbure
est observé pour les sujets &gés. Cette étude suggere que les déficits perceptifs et locomoteurs
des sujets agés alterent la reproduction, sans le contréle visuel, d’une trajectoire locomotrice. Plus
récemment, Gérin-Lajoie et al (2006) ont montré que I'évitement d’un mannequin lors d’'une marche
orientée vers une table induit une diminution de la vitesse d’avancement chez des sujets jeunes et agés
et, une distance d’évitement plus importante pour les sujets agés (Gérin-Lajoie et al., 2006). Cette
distance d’évitement, augmentée en condition de double tache, est considérée comme I'assurance
d’une marge de sécurité. Au final, les résultats de ces deux études sont en accord avec nos résultats, a
savoir la mise en évidence de modifications de la trajectoire locomotrice dans un contexte de navigation
avec contraintes environnementales (obstacle a contourner ou éviter, trajectoire complexe a reproduire)
chez des sujets présentant des troubles sensori-moteurs et de stabilité.

Pour conclure, les patients hémiparétiques présentent des critéres organisationnels
relatifs a la trajectoire locomotrice différents de ceux des sujets sains lors des phases Aller
et Demi-tour. Ceci concourt a I’explication de la différence de performance entre les deux
populations.

La différence observée pour les phases Aller et Demi-tour suggére une organisation

spécifique des patients hémiparétiques selon la nature de la tache de navigation et donc
le contexte environnemental. Les phases concernées par la déviation (phase complexe du
demi-tour et la phase précédente), les liens avec la BBS et les suggestions de la littérature
nous laissent supposer I’existence d’un lien entre cette déviation de la trajectoire et la
stabilité des patients hémiparétiques (ce point sera discuté en deuxiéme partie de la
discussion).

Il La stratégie

La premiére partie de discussion nous a permis de présenter la performance des patients
hémiparétiques lors de taches de navigation, les parametres explicatifs de cette performance et les
critéres organisationnels des patients hémiparétiques par rapport aux sujets sains. L’objectif de cette
seconde partie de discussion est de faire les liens entre ces criteres de performance, explicatifs et
organisationnels des patients hémiparétiques afin d’envisager la stratégie que ces patients mettent en
place lors de I'exécution de taches de navigation rencontrées au quotidien.

Rappelons tout d’abord que les patients hémiparétiques ont une performance chronométrique
diminuée par rapport aux sujets sains et que plusieurs facteurs contribuent a ce résultat : une cinématique
différente (contréle différent des mémes parametres pour les phases de marche, contrdle de parameétres
spécifiques différents pour le demi-tour), une stabilité différente, une trajectoire locomotrice différente et
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des perturbations cliniques. Il apparait donc que les patients hémiparétiques s’organisent différemment
lors de taches de navigation comparativement aux sujets sains.

[’organisation des patients hémiparétiques repose sur un facteur prépondérant qui est le maintien
d’une stabilité « optimale » pour assurer la meilleure performance chronométrique possible en fonction
de la tache demandée. Un défaut de stabilité était observé chez les patients hémiparétiques au cours
de chacune des phases de navigation. Ainsi, les déplacements médio-latéraux des patients étaient
augmentés lors des phases de marche orientée et leurs déplacements verticaux étaient augmentés
de la phase de demi-tour. Notons que I'observation des trajectoires locomotrices mettait en évidence
des trajectoires d’allure « ondulée » pour les patients hémiparétiques et d’allure plus « lisses » pour les
sujets sains. Nous pouvons envisager qu’une caractérisation de ces « ondulations » pourrait également
traduire un défaut de stabilité chez les patients hémiparétiques.

La stabilité des patients (ou leur défaut de stabilité) apparait comme un élément décisif pour
I’exécution de ces taches de navigation du fait de son influence sur la performance. En effet, nos résultats
montrent un lien entre la performance des patients (ou les facteurs explicatifs de cette performance)
et la stabilité de ces patients, quelle que soit la phase considérée. La phase du demi-tour dépend
principalement du pourcentage de phase de simple appui du coté parétique et du pourcentage de phase
oscillante du coté non-parétique, des parametres de stabilité. De plus, il existe une corrélation positive
entre ce dernier paramétre lors de cette phase du demi-tour et les capacités d’équilibration des patients
(score a la BBS). Concernant les phases de marche orientée, la longueur de pas (parametre explicatif
de la performance lors de ces phases) est positivement corrélée avec les capacités d’équilibration des
patients (score a la BBS). Ce lien entre la stabilité et la performance de patients hémiparétiques lors de
taches de navigation corrobore les résultats d’études relatant I'impact des troubles de I'équilibre de ces
patients (également évalués avec la BBS) sur leur vitesse de marche en ligne droite sans but a atteindre
(Richards et al., 1995), (Kobayashi et al., 2016).

Pour conclure, la stabilité des patients hémiparétiques est un critére important
qui conditionne la performance lors de I’exécution de taches de navigation. Il apparait alors

intéressant de s’interroger sur I’existence d’une stratégie de compromis entre stabilité et
performance chez les patients hémiparétiques lors de taches de navigation.

La réalisation d’un demi-tour par contournement d’un obstacle est une tache complexe en termes
de stabilité pour les patients hémiparétiques. Nos résultats montrent d’ailleurs que la performance de
ces patients lors du demi-tour implique spécifiquement des paramétres de stabilité. Dans ce contexte,
I'amplitude et la vitesse du COM dans le plan médio-latéral des patients hémiparétiques étaient réduites
au cours de cette phase comparativement aux sujets sains. De méme, la vitesse de marche était
diminuée de lors de cette phase du demi-tour, comparativement aux phases de marche orientées.
Une durée plus importante du demi-tour lors du TUG a également été mise en évidence chez des
sujets agés relatant des difficultés au demi-tour, comparativement a des sujets &agés ne relatant aucune
difficulté pour les demi-tours et des sujets jeunes (Thigpen et al., 2000). Les auteurs suggerent alors que
cette durée plus importante associée a la présence d’oscillations et d’une stratégie « pas multiples »
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(par rapport a une absence d’oscillations et des « pas pivot » pour les sujets jeunes) sont des indicateurs
de défaut de stabilité. Ces adaptations font alors figure de stratégie de simplification ayant pour but la
réalisation d’un mouvement sans perte de stabilité.

Au vu de nos résultats et de la littérature, nous émettons I'hypothése que les patients
hémiparétiques ont des mouvements dans le plan médio-latéral réduits par rapport aux sujets sains,
lors du demi-tour du TUG (composante principale du mouvement a cette phase) pour favoriser leur
stabilité, aux dépens de la performance. L'association d’une faible amplitude et d’'une faible vitesse
du COM dans le plan médio-latéral avec un faible score a la BBS est un argument confortant cette
hypothése, de méme que I'existence d’une corrélation négative entre les déplacements du COM dans
le plan médio-latéral et la performance lors de cette phase du demi-tour. L'étude récente de Hurt et
Grabiner (2015) permet d’étayer cette hypothese (Hurt and Grabiner, 2015). Ces auteurs ont étudié
la réalisation d’un « pas latéral tout en continuant a marcher en ligne droite » chez des sujets jeunes
et &gés. Leurs resultats mettent en évidence une vitesse réduite et une stabilité augmentée chez les
sujets agés, comparativement aux sujets sains. Les auteurs suggeérent la mise en place d’une stratégie
d’adaptation par les sujets agés, visant a assurer la stabilité lors de la réalisation de la tache. A l'inverse,
les sujets jeunes favoriseraient la manceuvrabilité avec une vitesse de marche non diminuée lors de la
réalisation du pas latéral, aux dépens de la stabilité. De maniére similaire, les patients hémiparétiques
inclus dans nos études prioriseraient une stratégie optimisant la stabilité au dépens de la performance
lors du demi-tour.

Au méme titre que des déplacements du COM lors du demi-tour diminués chez les patients
hémiparétiques par rapport aux sujets sains, le MFC augmenté du coté parétique chez les patients lors
des taches de marche orientée peut étre considéré comme une stratégie pour faire face a une situation
complexe d’un point de vue de la stabilité. Ainsi, I'augmentation du MFC apparait &tre une stratégie
fréquemment utilisée lorsqu’un sujet est confronté a la gestion d’une tache locomotrice complexe.

Au final, les éléments précédents relatifs au COM et au MFC aménent a considérer
ces criteres organisationnels des patients hémiparétiques comme la mise en place d’une
stratégie visant a conserver leur stabilité lors des taches de navigation. Nous envisageons

en effet la diminution des déplacements du COM dans le plan médio-latéral lors du demi-
tour et 'augmentation du MFC comme des ajustements observables dans un contexte
engendrant des difficultés a maintenir une stabilité. La performance des patients lors de
ces taches de navigation est donc conséquente de cette stratégie de stabilisation.

De la méme maniére, un faisceau d’éléments permet de supposer que la déviation de trajectoire
observée dans nos résultats peut étre interprétée comme une stratégie d’adaptation du fait des
défauts de stabilité des patients. En effet, les parametres de déviation de la trajectoire (DTW et HD)
étaient corrélés avec le score des patients a la BBS avec davantage de déviation lorsque les déficits
d’équilibration étaient importants. Nous postulons alors que pour faire face aux difficultés de maintien
de la stabilité lors de tdches complexes de navigation impliquant des changements de direction, les
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patients hémiparétiques mettent en place une stratégie d’ajustement en déviant leur trajectoire afin
d’organiser progressivement le changement de direction. En ce sens, I'adaptation des parameétres
spatio-temporels de marche et de la distance par rapport a un obstacle a contourner a été soulignée
comme moyen mis en ceuvre pour éviter tout déséquilibre (Higuchi, 2013).

Lorsque I'on considére les phases du TUG indépendamment, cette association entre les
parameétres de déviation de la trajectoire et le score a la BBS était vérifiée uniquement pour la phase
du demi-tour. Nous pouvons donc supposer que, pour compenser leurs troubles de I'équilibre, les
patients dévient leur trajectoire pour assurer davantage de sécurité pendant cette phase de demi-tour,
particulierement complexe et sollicitant davantage la stabilité. Précisons que la déviation de trajectoire
lors de cette phase du demi-tour était corrélée aux déficits sensitifs pouvant eux-mémes contribuer aux
troubles de I’équilibre (Niam et al., 1999), (Kligyte et al., 2003), (Tyson et al., 2013), (Yates et al., 2002).
Pour la phase Aller, aucune corrélation n’était retrouvée entre la déviation de la trajectoire et le score a la
BBS des patients. Pourtant nos résultats montraient que la déviation de la trajectoire au cours de cette
phase était différente entre les patients chuteurs et les non-chuteurs. Les phases Aller et Retour peuvent
étre percues comme similaires si I’'on considére la tache uniquement : marche orientée vers une cible et
précédent un demi-tour. En revanche, lorsque le contexte est pris en compte, soit la totalité de la tache
de navigation a effectuer, la phase Aller est la phase qui précéde le complexe contournement du cone
alors que la phase Retour signe la fin du test et précéde I'assise du patient. La déviation de trajectoire
observée lors de la phase Aller et qui n’est pas en lien avec les déficits d’équilibre des patients semble
donc indissociable de la phase du demi-tour qui la succede. Ainsi, nous pouvons envisager la déviation
de la trajectoire de la phase Aller comme étant une préparation de la déviation de la phase du demi-tour.

Au final, la déviation de la trajectoire locomotrice observée chez les patients
hémiparétiques semble faire figure de stratégie pour conserver leur stabilité lors des
taches de navigation. La phase du demi-tour par contournement et la phase précédente

sont celles concernées par cette déviation. Ceci laisse supposer que les patients
hémiparétiques mettent en place une stratégie de changement de direction progressif,
dés la phase précédant celle particulierement instable, pour permettre une optimisation du
maintien de la stabilité lors du contournement du céne.

Des études analysant les adaptations d’une tache locomotrice avec pointage de cibles et
perturbations de la stabilité corroborent notre hypothese d’une stratégie basée sur un compromis entre
stabilité et trajectoire (Hak et al., 2013a), (Hak et al., 2013b). Hak et al (2013) ont récemment mis en
évidence une diminution de la longueur de pas plus importante lors de I’'adjonction d’une perturbation
de la stabilité (translation de la surface de marche) a une tache de pointage (avec les genoux) en
comparaison a la tache de pointage seule chez des sujets sains (Hak et al., 2013a). Les mémes auteurs
ont ensuite comparé les adaptations de marche lors d’une perturbation de la stabilité et lors d’une
tdche de pointage chez 10 sujets hémiparétiques et 9 sujets sains (Hak et al., 2013b). Lors de la
comparaison inter-groupe, la perturbation de la stabilité induisait une diminution de la longueur de pas
pour les deux groupes (plus importante pour les patients) et une diminution de la vitesse de marche
uniquement pour les patients hémiparétiques. La tache de pointage engendrait une diminution de la
vitesse de marche et davantage d’instabilité uniquement pour les patients hémiparétiques. Ces deux
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études montrent I'existence de processus d’adaptation chez des sujets sains et chez des patients
hémiparétiques soumis a des taches déséquilibrantes lors de taches locomotrices. A l'instar de ces
études, I'élargissement de la trajectoire locomotrice lors d’une tache potentiellement déstabilisante de
contournement d’un obstacle peut étre considéré comme une stratégie d’adaptation permettant aux
patients hémiparétiques de maintenir leur stabilité.

Ce compromis entre contrdle du mouvement et stabilité a été récemment étudié chez 11 sujets
sains lors d’une tache combinant ces deux dimensions en position debout (Huang and Ahmed, 2011).
La tache de contrble consistait pour les sujets a pointer rapidement une cible dans le plan antéro-
postérieur a partir des déplacements de leur centre de pression et la tache concomitante de stabilité
consistait a maintenir stable un plateau reposant sur une base étroite médio-latéralement. Les résultats
montraient que la majorité des sujets aboutissaient a un meilleur contréle au détriment de la stabilité qui
était réduite. Les auteurs suggerent que la diminution de la stabilité n’est pas nécessairement inadaptée
lorsqu’on souhaite augmenter le contrdle. A I'inverse, nous pouvons supposer que les patients
hémiparétiques inclus dans cette série d’expérimentations, présentant des troubles de I'équilibre,
favorisent la stabilité (avec une rotation restreinte lors du demi-tour et une déviation de la trajectoire) au
détriment de la performance lors du TUG. Une stratégie de compromis entre stabilité et performance
apparait donc inhérente a la stratégie de compromis entre stabilité et trajectoire mise en place par les
patients hémiparétiques lors de taches de navigation.

Pour conclure, il existe une convergence d’arguments mettant en exergue la présence
d’une stratégie, chez les patients hémiparétiques, prenant en compte les difficultés
de maintien de leur stabilité pour réaliser des tdches de navigation. Ainsi, les patients

hémiparétiques présentent une organisation particuliere au niveau de leur comportement
locomoteur global avec la déviation de la trajectoire locomotrice et la diminution des
mouvements de rotation, mais également a un niveau plus local avec I'augmentation du
MFC.

Trois types de stratégie ont été décrits par Patla (2003) pour maintenir la stabilité au cours de
la locomotion : la stratégie rétroactive (liée a la détection sensorielle d’'une perturbation inattendue),
la stratégie anticipatrice (identification d’une potentielle perturbation basée essentiellement sur les
afférences visuelles et guidée par les expériences passées) et la stratégie prédictive (estimation d’une
perturbation attendue générée par les mouvements, basée sur des expériences passées), les deux
derniéres étant des stratégies proactives (Patla, 2003).

Concernant la stratégie rétroactive, Lamontagne et al (2010) ont trouvé une absence d’adaptation
ou des erreurs de trajectoires locomotrices chez des sujets hémiparétiques soumis a des flux optiques
par rapport a une trajectoire stéréotypée adoptée par des sujets sains (Lamontagne et al., 2010).
Les auteurs incriminent 'altération de la perception et du contrdle visuo-moteur apres un AVC. Dans
notre étude, la déviation de trajectoire retrouvée chez les patients hémiparétiques comparativement aux
sujets sains pourrait, de la méme maniere, s’expliquer par I'altération de I'intégration sensori-motrice
des patients et donc une difficulté de mise en place de la stratégie rétroactive. Aussi, la perception
et Iintégration des afférences sensorielles sont nécessaires pour une adaptation de la marche a
I'environnement (Berthoz and Viaud-Delmon, 1999). Une trajectoire locomotrice optimale et stabilisée
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est effectivement le résultat d’une combinaison des afférences visuelles, proprioceptives et vestibulaires
(Hicheur et al., 2007), (Cirio et al., 2013). Les patients inclus dans nos études présentaient des déficits
sensitifs (qui étaient corrélés a la déviation de la trajectoire) et des troubles visuels (hémianopsie latérale
homonyme), pour deux d’entre eux. Les fonctions vestibulaires sont quant a elles rarement affectées a
la suite d’'un AVC. De plus, a la suite d’'un AVC, les patients présentent une difficulté a mettre en place
des ajustements rétroactifs (Fisher et al., 2000). Au final, les déviations de trajectoire présentées par
les patients hémiparétiques aux phases Aller et Demi-tour pourraient s’expliquer par une difficulté de
perception, d’intégration et de mise en place d’une stratégie de type rétroactive lors de ces taches de
navigation.

Certains arguments sont, en revanche, en faveur d’une stratégie proactive, mise en place par
les patients pour faire face a une situation complexe d’un point de vue de la stabilité. La déviation
sur la totalité des phases Aller et Demi-tour et non en un point extréme isolé (différence significative
pour DTW qui correspond a la totalité de la phase) et la « marge spatiale » retrouvée dans la littérature
pour éviter les perturbations dans des situations complexes de stabilité (Higuchi, 2013), (Hackney and
Cinelli, 2013) sont en faveur d’une stratégie proactive d’une situation a risque de chute. La déviation
de la trajectoire présente des la phase Aller et permettant la discrimination des patients chuteurs nous
laissent supposer I'existence d’une stratégie anticipatrice ou prédictive, précédent la phase complexe
du demi-tour. Ce comportement serait a I'image de celui des sujets sains et des sujets agés qui mettent
en place une déviation de trajectoire anticipatrice, avant un obstacle a éviter, assurant une marge
spatiale de sécurité (Gérin-Lajoie et al., 2005), (Gérin-Lajoie et al., 2006), (Hicheur et al., 2007). Par
ailleurs, notons que les expériences déséquilibrantes vécues dans le passé permettent la mise en place
d’ajustements proactifs afin d’assurer la stabilité (Marigold and Patla, 2002). Au vu de ces éléments, nous
pouvons supposer que les patients hémiparétiques chroniques inclus dans notre étude, présentant des
troubles de I'équilibre et étant confrontés quotidiennement a des taches de navigation potentiellement
déséquilibrantes, dévient leur trajectoire afin d’étre précautionneux pour la réalisation de la préparation
et I'exécution du contournement de I'obstacle. Ceci étant, aucune évidence a I'issue de nos études ne
permet de confirmer ces hypotheses.

Pour conclure, les stratégies rétroactive et proactive sont décrites pour le
maintien de la stabilité au cours de la locomotion. Nos résultats laissent supposer une
difficulté de mise en place d’ajustements rétroactifs chez les patients hémiparétiques
lors de la réalisation de taches complexes de navigation comme le contournement d’un

obstacle. En revanche, ces patients semblent mettre en ceuvre une stratégie proactive en
connaissance de la perturbation a venir. Ainsi nous pouvons considérer la stratégie de
compromis entre la stabilité, la trajectoire et la performance comme le reflet d’ajustements
proactifs.
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lll Intéréts cliniques

Ce travail repose sur une évaluation instrumentale du TUG chez des patients hémiparétiques pour
permettre une compréhension de leur comportement locomoteur dans des taches de navigation. Les
analyses menées et leurs résultats émergents d’un point de vue cinématique, de la stabilité et de la
trajectoire vont pouvoir étre utiles aux cliniciens sur le plan de I'évaluation des patients hémiparétiques.

Ill.1 Les taches

La différence de résultats obtenus en fonction de la nature de la tache de navigation confirme
I'intérét d’évaluer les taches composant le TUG sur le plan biomécanigue. Un comportement spécifique
(d’un point de vue cinématique, stabilisation et trajectoire) était en effet observé, selon les taches
incriminées. L’évaluation de taches de navigation, correspondant davantage aux activités locomotrices
du quotidien par rapport a une marche stabilisée en ligne droite sans objectif, semble donc étre une
approche a favoriser.

De plus, dans la prise en charge des patients hémiparétiques, il est recommandé de privilégier
des exercices en « tache orientée », autrement dit des exercices a réaliser en environnement réel
et correspondant aux actions de la vie quotidienne (Carr and Shepherd, 1998). Le travail en « tache
spécifigue », sous-entendant que les taches améliorées sont celles spécifiquement travaillées, est
également recommandé en rééducation neurologique (Kwakkel et al., 1999). Il apparait donc pertinent
d’envisager des évaluations en adéquation avec les taches travaillées en rééducation.

Les taches de navigation impliquées dans le TUG sont fréquemment travaillées en rééducation
et réalisées par les patients au quotidien. Néanmoins I’évaluation couramment menée dans ce cadre
reste la performance chronométrique au TUG, qui peut ne pas étre suffisamment sensible pour mettre
en évidence de modifications a l'issue de I’entrainement. Certains auteurs ne trouvent ainsi pas
d’amélioration au test du TUG a I'issue de plusieurs semaines d’entrainements en tache orientée (Dean
et al., 2000), (Salbach et al., 2004) alors que d’autres trouvent des effets modérés (Blennerhassett and
Dite, 2004), (Mead et al., 2007). Il est possible que les entrainements n’entrainent pas de modification
du TUG ou bien que la performance chronométrique a ce test ne permette pas de mettre en évidence
une différence. De méme, une précédente étude de notre équipe n’a pas trouvé de différence a la
performance au TUG a l'issue d’un entrainement de marche au sol par rapport a un entrainement sur
tapis roulant (Bonnyaud et al., 2014). Cependant, nous pouvons émettre I’hypothése que I’'amélioration
de la performance globale pouvait masquer I'amélioration spécifique de telle phase du TUG selon
I'entrainement réalisé (amélioration des phases de marche orientée pour I'entrainement sur tapis roulant
et du demi-tour pour I’entrainement dans le couloir impliquant des demi-tours). Une réponse a la limite
de l'interprétation de I'absence de modification d’un score global de performance peut étre I'analyse
des composantes aboutissant a ce score, ce qui légitime I'analyse instrumentée du TUG par exemple.
D’autres auteurs ont présenté la méme démarche que celle de notre travail, orientée vers I'analyse
et la compréhension d’autres taches locomotrices rencontrées au quotidien comme I’'enjambement
d’obstacles lors d’une marche lancée (Said et al., 1999), (Said et al., 2001), (Said et al., 2008), (Said et
al., 2014). Ce genre d’analyse approfondie pourrait étre proposé pour évaluer les effets d’entrainements
orientés vers ces taches quotidiennes de navigation. Hollands et al (2015) ont par exemple récemment
proposé un entrainement d’évitement d’obstacles destiné a des patients hémiparétiques (Hollands et
al., 2015).
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lll.2 Les modalités et paramétres

Concernant les modalités d’évaluation du TUG instrumenté, les résultats de I'étude 1 permettent
de recommander une condition standardisée (par rapport a une condition spontanée sans consigne
spécifique quant au sens du demi-tour ou au positionnement initial) pour de prochaines évaluations
instrumentées du TUG.

Concernant les paramétres, nos études ont évalué la cinématique, analysée habituellement en
routine clinique lors d’une marche stable en ligne droite, mais également des parameétres de stabilité et
de trajectoires locomotrices, rarement investigués en routine. Or, les résultats de notre travail mettent
en évidence I'intérét d’évaluer ces derniers. Ainsi, les déplacements du COM refletent tantdt un défaut
de stabilité, tantdt une marche précautionneuse (lors d’un demi-tour par exemple), de méme que le
MFC qui traduit également une marche précautionneuse par son augmentation. La trajectoire adoptée
pour ces taches de marche orientée et de contournement d’un obstacle peut étre analysée en termes
de déviation par rapport a une trajectoire optimale, nous informant alors sur I’'organisation spatiale
adoptée par les patients. Ces parametres de stabilité et de trajectoire, en complément des parametres
cinématiques, permettent une compréhension du comportement locomoteur des patients a I’origine de
leur performance. La mise en évidence de liens entre ces parametres biomécaniques et les données
clinigues permet d’envisager les difficultés des patients hémiparétiques lors de I'exécution de taches
de navigation. Ainsi les patients présentant des troubles de I'’équilibre, objectivables par un faible
score a la BBS, seront certainement confronter a une difficulté lors de la réalisation de demi-tours par
contournement. Une moindre amplitude de rotation et une déviation de la trajectoire locomotrice seront
alors probablement adoptées pour éviter un risque de chute. D’autre part, nous pouvons émettre
I’hypothéese qu’un programme de rééducation orienté vers un travail de la stabilité dynamique lors de
tdches de navigation avec demi-tours permettrait une meilleure performance lors de ces taches avec
une rotation plus ample et une moindre déviation.

Au-dela de lanalyse de I'organisation comportementale des patients hémiparétiques, les
parametres étudiés dans ce travail ont permis de discriminer les patients chuteurs des non-chuteurs,
alors que la littérature pointe les limites d’une telle distinction avec I'approche clinique conventionnelle
du TUG (Andersson et al., 2006), (Persson et al., 2011), (Barry et al., 2014). Le fort taux de chutes chez
les patients hémiparétiques et les conséquences possiblement invalidantes font du dépistage du risque
de chute une question importante chez ces patients. Nos résultats laissent envisager que ce ne serait
pas le score chronométrique global au TUG (pas de différence significative entre les chuteurs et les non-
chuteurs) mais certains parametres lors d’une certaine phase du TUG qui seraient plus spécifiqguement
prédictifs des chutes des patients hémiparétiques. La phase du demi-tour et la phase de marche
orientée précédant celle du demi-tour apparaissent en effet comme les deux phases complexes du TUG
permettant de discriminer les patients chuteurs, au moyen de parameétres de stabilité et de trajectoire,
usuellement peu analysés. Ces informations vont permettre d’orienter I'évaluation sur les parametres
et les taches locomotrices pertinentes pour mettre en exergue un risque de chute chez des patients
hémiparétiques. L'identification des patients a risque de chute en amont de la survenue d’une chute et
de ses conséquences (possible détérioration des capacités fonctionnelles, fractures, colts médicaux)
pourrait permettre une orientation spécifique de la prise en charge rééducative vers un travail de la
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stabilité lors de tdches de navigation complexes par exemple. Cependant, des précautions doivent étre
prises quant a I'interprétation de nos résultats concernant les chuteurs du fait de la disproportion de
nos groupes chuteurs et non-chuteurs. Une étude dont I'objectif serait spécifiquement de discriminer
les patients chuteurs des non-chuteurs permettrait d’étayer ces éléments.

Au final, une évaluation instrumentée du TUG pourrait s’avérer intéressante pour I'analyse des
effets de telle ou telle thérapeutique (qu’elle soit rééducative, médicale ou chirurgicale) sur des paramétres
telle que la trajectoire ou ceux reflétant la stabilité au cours de taches de navigation rencontrées au
quotidien.
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I Conclusions

L’objectif de ce travail était de caractériser I'organisation des patients hémiparétiques par une
analyse biomécanique de taches de navigation rencontrées au quotidien comme celles impliquées dans
le TUG (marche orientée vers une cible a contourner et demi-tour par contournement de cette cible).
Cette analyse passait par une approche conventionnelle, 'analyse des parameétres spatio-temporels
et de la cinématique articulaire, et par deux approches plus innovantes, I'analyse de parametres de
stabilité et de trajectoire locomotrice.

Le chapitre 1 de ce travail a permis de faire le point sur les symptdémes pouvant impacter la
marche a la suite d’'un AVC et de poser les bases théoriques de la cinématique de la marche humaine
et des troubles de la marche chez les patients hémiparétiques. Ce chapitre propose également une
approche de la stabilité pendant la marche et ses observations chez les patients hémiparétiques,
soumis a une problématique de la chute. Puis une contextualisation de la marche est proposée dans
I'environnement du sujet, aboutissant a la notion de navigation. Cette navigation induit une approche
des trajectoires locomotrices, en lien avec I'adaptation aux contraintes environnementales. Au final, un
test clinique, représentatif de taches de navigation quotidiennes des patients et usuellement utilisé est
Propose pour une analyse biomécanique contrastant avec la mesure conventionnelle de sa performance
chronométrique.

Cette revue de littérature nous a guidé dans le choix de paramétres biomécaniques a analyser,
présentés en chapitre 2. Ce chapitre exposait méthodologie générale et donc les outils utilisés et la
procédure expérimentale.
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Le chapitre 3 analysait les paramétres spatio-temporels et de la cinématique articulaire liés a
la performance chronométrique des phases de marche orientée et de demi-tour du TUG chez des
patients hémiparétiques chroniques et des sujets sains dans les études 1 et 2. Ce chapitre présentait
également I'analyse des déplacements du COM et du MFC, dans I'étude 3, et I'analyse des trajectoires
locomotrices, dans I'étude 4, de patients hémiparétiques et de sujets sains, lors des mémes phases du
TUG. Des analyses complémentaires ont été menées pour mettre en évidence les corrélations entre les
données cliniques des patients et les parameétres biomécaniques investigués.

Le chapitre 4 proposait une discussion des résultats des différentes études permettant la
caractérisation de I'organisation des patients hémiparétiques comparativement a des sujets sains, au
moyen de criteres de performance, de criteres explicatifs de la performance et de criteres organisationnels.
Puis une interprétation de la stratégie mise en place par les patients a été proposée avec la notion de
compromis entre la performance, la stabilité et la trajectoire locomotrice. Les intéréts cliniques orientant
vers I'évaluation de taches de navigation des patients hémiparétiques sont finalement présentés.

Les principaux résultats de cette these mettent en évidence une diminution de la majorité des
parameétres spatio-temporels et de la cinématique articulaire lors des taches de navigation du TUG chez
les patients hémiparétiques comparativement aux sujets sains. Les patients hémiparétiques contrdlent
les taches de marche orientée a partir des mémes parameétres que les sujets sains (avec une modulation
différente) et contrdlent la tdche du demi-tour par des parametres spécifiques différents, relatifs a la
stabilité. La stabilité des patients hémiparétiques ressort comme un critére particulierement important
qui conditionne la performance des taches de navigation.

Un défaut de stabilité des patients hémiparétiques était observable par des déplacements du
COM plus importants que les sujets sains dans le plan médio-latéral lors des phases de marche orientée
et dans le plan vertical lors de la phase du demi-tour. La diminution des déplacements du COM dans
le plan médio-latéral lors du demi-tour et 'augmentation du MFC sont alors envisagés comme la mise
en place d’une stratégie visant a conserver la stabilité des patients hémiparétiques lors de ces taches
de navigation. La déviation de la trajectoire locomotrice observée chez les patients hémiparétiques lors
des phases Aller et Demi-tour est également envisagée comme une stratégie visant une optimisation
du maintien de la stabilité permise par un changement de direction progressif, des la phase précédant
celle particulierement instable. La performance des patients lors de ces taches de navigation est donc
conséquente de ces stratégies de stabilisation.

Au final, les patients hémiparétiques semblent mettre en place une stratégie de compromis entre
la stabilité, la trajectoire et la performance lors de la réalisation de tdches de navigation. Précisons que
les patients présentant les scores les plus faibles a la BBS ont une moindre longueur de pas lors des
phases de marche orientée, restreignent leur amplitude de rotation et dévient davantage leur trajectoire
lors du demi-tour. Aussi, lors du demi-tour, une déviation plus importante de la trajectoire est observée
chez les patients présentant des troubles de la sensibilité superficielle plantaire et une diminution de
la phase de simple appui du coté parétique est observée chez les patients présentant davantage de
déficits moteurs.

Les résultats de ce travail montrent par ailleurs I'intérét d’évaluer I'organisation locomotrice
des patients hémiparétiques lors de I'exécution de taches de navigation, en complément des tests
clinigues chronométriques et d’une analyse de marche en ligne droite. A la suite d’une prise en charge
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thérapeutique, des améliorations pourraient ainsi étre mises en évidence par ces parameétres de stabilité,
de trajectoire et cinématiques au cours de taches de navigation alors que celles-ci pourraient ne pas
étre détectées par un score chronométrique ou une analyse de la marche décontextualisée.

Il Perspectives

1.1 Séquence de rotation axiale

La navigation implique deux composantes, la stabilisation et I'orientation. La stabilisation
correspond au contréle de I'équilibre du sujet lors de différentes taches locomotrices et I'orientation
correspond a l'interface entre le sujet et le monde extérieur afin d’orienter le mouvement, elle est centrée
sur I'environnement. Ce travail a permis une approche de la stabilisation, mais n’a que peu abordé
I'orientation, au travers de la trajectoire, qui reste un pan intéressant a étudier. L’étude de la séquence
de rotation axiale, par rapport a I'obstacle a contourner, apparait étre une perspective a envisager afin
de compléter la compréhension de I'orientation du sujet lors de taches de navigation. Cette analyse
apporterait un élément de réponse a la problématique soulevée précédemment, a savoir I’éventuelle
existence d’une stratégie proactive chez les patients hémiparétiques réalisant des taches de navigation.

Plusieurs études se sont intéressées aux stratégies d’orientation de la téte et du tronc de lors de
tdches de navigation impliquant des changements de direction. Des changements d’orientation de la
téte ont systématiquement été observés préalablement au changement de direction de la trajectoire
locomotrice, suggérant I'existence d’une stratégie anticipatrice de la future direction d’avancement
chez les sujets sains, a I'image des mécanismes anticipatoires lors de I'initiation de la marche par
exemple (Grasso et al.,, 1996), (Grasso et al., 1998), (Grasso et al., 1998), (Hollands et al., 2001),
(Courtine and Schieppati, 2003), (Prévost et al., 2003), (Hicheur et al., 2005). Cette rotation initiale de la
téte, précédant le changement de direction de la trajectoire locomotrice, était suivie par une séquence
de rotation organisée de haut en bas (téte puis tronc puis membres inférieurs). Avec I'avancée en age
de I'enfant, la rotation de la téte est progressivement dissociée de la rotation du tronc, témoignant de la
mise en place progressive d’une stratégie d’anticipation au fur et a mesure de 'apprentissage (Grasso
et al., 1998).

Cette stratégie anticipatoire est stable et reproductible, avec la présence d’une anticipation
en 'absence d’afférences visuelles et une distance constante d’orientation de la téte par rapport a
I'obstacle a contourner (Courtine and Schieppati, 2003), (Prévost et al., 2003). De plus, I'orientation
de la téte est liée a la géométrie du parcours de navigation et a I'activité de locomotion, comme étant
le reflet d’'une coordination entre les yeux, la téte et les membres (Hicheur et al., 2005). La présence
de ce comportement anticipateur reproductible lorsque la vue est occultée souligne qu’il n’est pas
exclusivement basé sur les afférences visuelles et laisse supposer que cela fait partie de notre librairie
interne de synergies axiales de rotation (Courtine and Schieppati, 2003).

Cette anticipation de rotation de la téte lors de changements de direction est interprétée comme
une contribution a la perception par une recherche active de nouvelles afférences permettant une mise
a jour des changements environnementaux afin de planifier au mieux le mouvement (Courtine and
Schieppati, 2003). Ainsi, le sujet prendrait régulierement connaissance de I'environnement avec ses
contraintes, des obstacles, des cibles a atteindre.
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A notre connaissance une seule étude a récemment analysé la rotation de la téte de sujets
hémiparétiques lors d’un changement de direction. Hollands et al (2010) ont ainsi analysé, parmi
d’autres parametres, la coordination axiale d’'un point de vue spatial et temporel lors de la réalisation
d’un demi-tour chez des patients hémiparétiques et des sujets sains (Hollands et al., 2010). Les résultats
montraient une rotation de la téte anticipatrice du changement de direction, similaire d’un point de
vue temporel pour les deux populations, mais spatialement plus proche du point de changement de
direction pour les patients hémiparétiques comparativement aux sujets sains.

Au-dela de vérifier cette séquence de rotation axiale avec nos données, celles-ci nous permettraient
surtout de mettre en lien larotation de la téte avec les paramétres de stabilité, de trajectoire et les données
cliniques des patients hémiparétiques. En effet, nous pouvons nous demander si les déficits sensori-
moteurs et de stabilité présentés par les patients hémiparétiques jouent un réle dans le comportement
d’anticipation de rotation de la téte, si celle-ci est vérifiée.

L'intégration de I'ensemble des afférences (visuelles, vestibulaires, proprioceptives et
extéroceptives) contribue a I'orientation et la localisation du corps dans I'espace a la fois pour savoir se
situer et pour s’orienter vers une direction future. De plus, la présence de stratégie anticipatrice lors de
la privation visuelle peut étre expliquée par I'utilisation d’informations proprioceptives et vestibulaires et
témoigner de I'utilisation de la mémoire spatiale (Prévost et al., 2003). A la suite d’'un AVC, des troubles
sensitifs et cognitifs sont frequemment retrouvés, des troubles visuels parfois et de maniere générale, il
existe une difficulté a mettre en place des ajustements basés sur I'intégration multisensorielle (Fisher et
al., 2000). Il apparait donc Iégitime de s’interroger sur le comportement anticipatoire de rotation de la
téte spécifiguement chez des patients présentant des troubles sensitifs, des troubles spatiaux comme
une négligence spatiale ou des troubles de la mémoire spatiale. Cette analyse est une perspective
envisageable du fait de I'enregistrement des mouvements de la téte des participants lors de nos
expérimentations.

1.2 Une caractérisation de la trajectoire par son oscillation ?

Notre travail a proposé I'étude de la stabilité des sujets par la quantification de leurs déplacements
du COM. Le COM était déterminé par I'approche multisegmentaire et, son amplitude et sa vitesse de
déplacements étaient calculées a chaque cycle de marche, par rapport a la ligne d’avancement des
sujets.

Par ailleurs, les trajectoires locomotrices investiguées dans I'étude 4 étaient d’allure « ondulée »
pour les patients hémiparétiques par rapport aux sujets sains dont les trajectoires semblaient plus
« lisses ». La figure 9 illustre cette différence d’allure de trajectoires observées chez un patient
hémiparétique et un sujet sain.

151



Chapitre 5: Conclusions et perspectives
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Figure 9 : Trajectoires locomotrices lors du TUG chez un patient hémiparétique (& gauche) et un sujet sain (a
droite).

Le TUG comprend la combinaison d’un mouvement d’avancement vers une cible (le cbne pour le
contourner puis le siege pour s’y asseoir) et d’un mouvement de changement d’orientation progressive
du corps pour préparer le demi-tour (par contournement de I'obstacle puis demi-tour avant de s’asseoir).
Cette « ondulation » observée peut alors étre interprétée comme une oscillation, a I'échelle du cycle de
marche, au cours d’'un mouvement d’ensemble (le mouvement d’avancement).

e (Caractérisation de 'oscillation de la trajectoire

Nous pouvons nous interroger sur la capacité de notre approche de quantification des
déplacements du COM a traduire cette oscillation. Tout d’abord I'amplitude de déplacement du COM
correspond a I'écart entre deux positions extrémes au cours d’un cycle de marche. Nous avons donc
une donnée d’amplitude a chaque cycle de marche. Davantage de points sur un cycle de marche
permettraient d’étre plus représentatif d’une trajectoire courbe et donc de mettre plus en évidence les
oscillations. D’autre part, la ligne d’avancement est rectiligne ; elle correspond ainsi a la droite entre
la position du marqueur sacrum en début et en fin de cycle. Nous pouvons supposer que la ligne
d’avancement faite d’une succession de lignes rectilignes n’est pas suffisamment représentative de la
trajectoire curviligne décrite par les sujets au cours du TUG. Au final, caractériser de maniere optimale les
oscillations observées nécessiterait la prise en compte de tous les points de la trajectoire plutét qu’une
donnée par cycle et nécessiterait de considérer une ligne d’avancement curviligne. Il apparait dans ce
cas difficile de définir une telle ligne. Nous proposons donc de partir du postulat que la caractérisation
de l'oscillation de la trajectoire du COM peut s’envisager sans référence a une ligne d’avancement.
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Par ailleurs, la création de la ligne d’avancement et la détermination de I'amplitude de déplacement
du COM se font a chaque cycle ; elles sont donc dépendantes du temps. Or les sujets sains et les
patients hémiparétiques ont des vitesses et des durées d’exécution du TUG différentes. |l serait donc
légitime de proposer une méthode s’affranchissant de cette composante temporelle pour comparer
I'oscillation de ces deux populations.

Aussi, il nous semble que caractériser 'oscillation ne peut se résumer a la prise en compte
de 'amplitude seule. En effet, deux trajectoires peuvent avoir la méme amplitude d’oscillation, mais
I'une peut avoir un plus grand nombre d’oscillations que 'autre sur une méme longueur. Considérer la
longueur en plus de I'amplitude de I'oscillation apparait pertinent pour mieux caractériser I'oscillation.
La figure 10 illustre ce propos.

o T :
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Figure 10 : Considération de "'amplitude et de la longueur de la trajectoire pour caractériser I'oscillation.

Pour nous affranchir de la différence de vitesse, nous proposons une analyse de I'oscillation
par une approche géométrique, uniquement spatiale. Cette approche géométrique se baserait sur
les parameétres intrinseques de la courbe comme la variation de la courbure en fonction de I'abscisse
curviligne.

e Association entre oscillation et stabilité

'amplitude et la vitesse du COM analysées dans notre étude nous renseignaient sur la stabilité
des patients hémiparétiques. Ces déplacements du COM et les oscillations de la trajectoire observées
s’averent étre deux éléments différents. Apres la caractérisation de I’oscillation de la trajectoire, nous
émettons I'hypothése que I'excés d’oscillations observé chez les patients hémiparétiques traduit
également un défaut de stabilité des patients. Un autre objectif de cette perspective est d’étudier la
corrélation entre la mesure de 'oscillation et la stabilité du sujet évaluée par I’'amplitude et la vitesse des
déplacements du COM. Cette possible autre caractérisation de la stabilité des patients hémiparétiques
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pourrait nous permettre de mieux déterminer la phase du TUG particulierement concernée par la
stratégie de compromis entre la stabilité et la trajectoire.

I1.3 Le TUG avec contrainte

[1.3.1 Contrainte environnementale proprioceptive: la surface de marche

Au-dela de l'intérét d’'une tache de navigation pour évaluer les déplacements des patients
hémiparétiques, il semble complémentaire de considérer differentes modalités du contexte
environnemental comme le type de terrain par exemple.

La marche sur terrain varié fait partie des contraintes environnementales rencontrées au quotidien
et pouvant influencer le comportement locomoteur. Plusieurs études montrent que la marche sur terrain
varié engendre de l'instabilité et entraine des modifications cinématiques de la marche (Menz et al.,
2003), (Thies et al., 2005), (Rogers et al., 2008), (Marigold and Patla, 2008). Ainsi, la marche sur surface
souple ou obstacles mous induit, chez des sujets jeunes et des sujets agés, une diminution de la vitesse
de marche et de la cadence (Menz et al., 2003), (Rogers et al., 2008). Une autre étude chez des sujets
agés trouve les mémes résultats et une augmentation de la largeur de pas et de la durée du cycle de
marche (Thies et al., 2005). Sur le plan de la cinématique articulaire, Barbara et al (2012) montrent que
les sujets jeunes et agés associent une augmentation de leur flexion de hanche et de genou lors de la
phase oscillante a une diminution de leur vitesse de marche lorsqu’ils marchent sur un tapis mou par
rapport a un sol rigide (Barbara et al., 2012). De plus, Marigold et Patla (2008) montrent que la marche
en terrain varié augmente davantage les déplacements du tronc chez les sujets &gés que chez les sujets
jeunes, traduisant une difficulté a maintenir la stabilité notamment dans le plan médio-latéral (Marigold
and Patla, 2008). Cependant, une diminution de la vitesse de marche et de la longueur des pas adoptée
par les sujets agés suggérait une marche précautionneuse afin de maintenir la stabilité. De maniére
similaire, les auteurs des études présentées suggerent une stratégie conservatrice (précautionneuse)
avec des adaptations de la marche visant a maintenir la stabilité (ou éviter le risque d’accrochage du
pied dans I'étude de Barbara et al) en situation de perturbation proprioceptive.

Par ailleurs, certains auteurs se sont intéressés au poids des afférences sur le contrle de
taches de navigation. Une modification des trajectoires locomotrices est, en effet, mise en évidence
en cas de perturbation du systeme vestibulaire, suggérant que le systeme vestibulaire joue un role
important dans les déplacements du corps dans I'espace (Glasauer et al.,, 1995), (Glasauer et al.,
2002), (Kennedy et al., 2005). A I'instar des afférences vestibulaires, nous pouvons émettre I’hypothése
qu’une perturbation proprioceptive induite par une marche sur un tapis mou pourrait entrainer une
modification de la trajectoire locomotrice lors de taches de navigation.

Chez les patients hémiparétiques, plusieurs auteurs montrent qu’une perturbation extéroceptive
et/ou proprioceptive (induite par un tapis mou ou par une plateforme mobile) augmente les oscillations
posturales de ces patients, par rapport a une surface stable et par rapport a des sujets sains (Marigold
et al., 2004b), (Yu et al., 2012). Notons que nous n’avons pas retrouvé d’études sur I'influence d’un
tapis mou sur les parametres de marche ou de trajectoire des patients hémiparétiques. Ceci étant, au
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vu des résultats concernant les oscillations posturales, nous pouvons supposer qu’une marche sur
tapis mou perturbe la stabilité des patients hémiparétiques et induit des modifications locomotrices.

Medley et Thompson (2005) se sont intéressés a I'impact de différentes conditions dont une
condition environnementale, sur la performance au TUG chez des sujets jeunes et dgés (Medley and
Thompson, 2005). Ces auteurs ont ainsi évalué la performance au TUG sous une condition cognitive
(caleul), une condition manuelle (transporter un verre d’eau), une condition environnementale (marche
sur une surface souple) et la combinaison de ces différentes conditions (Medley and Thompson,
2005). Leurs résultats montrent que la condition sur tapis souple n’engendrait pas de différence de la
performance au TUG pour les deux groupes. A l'inverse, I'adjonction de taches cognitive et manuelle
augmentait le temps pour effectuer le TUG, pour les deux groupes, mais de maniere plus importante
chez les sujets &gés. Les auteurs suggerent que la rigidité du tapis utilisé n’était pas suffisante pour
induire une instabilité. Nous pouvons également envisager que les possibles changements induits ne
se traduisaient pas par une modification de la performance chronométrique.

Au final, il semble Iégitime de s’interroger sur les adaptations mises en place par les patients
hémiparétiques lorsque le TUG est effectué sur tapis mou, ce qui engendre une perturbation
proprioceptive. Notre perspective serait alors de caractériser I'organisation des patients hémiparétiques
lors de taches de navigation avec une contrainte proprioceptive imposée et de définir les spécificités
d’organisation selon la phase du TUG. Aussi, nous pourrons déterminer le poids des afférences
proprioceptives sur les stratégies développées par ces patients lors d’une navigation en environnement
contraint.

[1.3.2 Contrainte cognitive : la double tache

Notre travail n'a pas porté sur I'étude des troubles des fonctions cognitives et leur impact sur
les taches de navigation comme celles du TUG. Etudier ces implications nous parait une perspective
intéressante pour caractériser I'organisation des patients hémiparétiques présentant des troubles
cognitifs lors de taches de navigation et déterminer la ou les stratégie(s) mise(s) en place par les
patients dans ce contexte. Deux précédentes études ont par exemple mis en évidence des liens entre
négligence et trajectoire locomotrice chez des patients hémiparétiques, lors d’'une marche en ligne
droite ou dans un contexte de réalité virtuelle (Huitema et al., 2006), (Aravind and Lamontagne, 2014).
Ainsi, les patients présentant une négligence unilatérale spatiale ont une trajectoire de marche déviée
lorsqu’une marche en ligne droite vers une cible leur est demandée (Huitema et al., 2006). Une récente
étude a analysé l'influence de I’'hnéminégligence faisant suite a un AVC sur une tache de navigation
évaluée en réalité virtuelle (Aravind and Lamontagne, 2014). Les collisions concernaient les patients
négligents avec davantage de difficulté dans la perception des obstacles situés du c6té controlésionnel,
ceux qui maintenaient une plus petite distance de I'cbstacle et qui initiaient tardivement une stratégie
d’évitement. De plus, alors que les performances aux tests papier crayon mettant en évidence une
négligence ne montraient pas de différence entre les patients entrant en collision et ceux évitant les
obstacles, I'analyse des déplacements locomoteurs en environnement virtuel pointait les patients a
risque. Cette étude montre I'intérét d’évaluer les patients victimes d’'un AVC en condition de taches
de navigation dans un environnement avec obstacles, puisque les troubles des fonctions cognitives
influencent ces taches. Ce genre d’approche en environnement réel serait légitime pour apprécier la
récupération de tels troubles et leurs impacts sur les déplacements quotidiens des patients.
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D’autre part, évaluer I'organisation biomécanique des patients hémiparétiques lors de I'exécution
de taches de navigation en condition de double tache pourrait permettre de déterminer le poids des
fonctions attentionnelles sur les stratégies développées par ces patients et de quantifier I'automaticité
de ces taches de navigation. Plusieurs études ont évalué les effets d’une condition de double tache
sur la marche chez des patients hémiparétiques. Yang et al (2007) montrent qu’effectuer deux taches
motrices simultanément comme marcher en transportant un plateau chargé ou en boutonnant une
veste induit, chez les patients hémiparétiques, une diminution de la vitesse de marche, de la cadence
et de la longueur de pas dans des proportions significativement plus importantes que chez les sujets
sains (Yang et al., 2007). Lorsque c’est une tache cognitive qui est ajoutée au cours de la marche, les
patients hémiparétiques réduisent leur vitesse de marche et augmentent leur phase de double appui
(Bowen et al., 2001). Ces résultats suggerent que la double tache affecte la marche et la stabilité au
cours de la marche chez ces patients. Récemment Baetens et al (2013) ont comparé l'influence de
deux taches cognitives sur la marche de patients hémiparétiques (Baetens et al., 2013). Les résultats
mettaient en évidence une dégradation des parameétres spatio-temporels de la marche lorsque celle-ci
est associée a une tache de fluence verbale ou a une tache de calcul (impliquant la mémoire de travail).
Cependant, seule la double tache impliquant la mémoire de travail permet de discriminer les patients
hémiparétiques chuteurs des non-chuteurs (par une diminution de la longueur de I’'enjambée et de la
longueur du pas cbté non-parétique) (Baetens et al., 2013).

Quelgues auteurs ont étudié 'influence d’une double tache sur la performance chronométrique
au TUG. Shumway-Cook et al (2000) ont évalué la performance au TUG sous 3 conditions a savoir
le TUG en simple tache, le TUG avec I'ajout d’'une tache cognitive (tache de calcul) et le TUG avec
I'ajout d’une tache motrice (transport d’une tasse pleine), chez des sujets agés (Shumway-Cook et al.,
2000). Les auteurs trouvent une augmentation du temps pour réaliser le TUG lorsqu’une autre tache
lui était ajoutée. Les mémes conditions expérimentales ont récemment été évaluées chez des patients
hémiparétiques ayant subi un AVC (Manaf et al., 2014). Les résultats montrent que I'adjonction de la
tache cognitive et de la tache motrice au TUG engendre une augmentation de la durée et du nombre
de pas comparativement au TUG réalisé en simple tache, sans différence entre les deux conditions de
double tache. Au-dela de I'observation d’une diminution de la performance au TUG, il existe un réel
intérét a mettre en évidence les mécanismes impliqués dans la détérioration de cette performance. Une
évaluation du TUG instrumentée (par approche biomécanique) en condition de double tache permettrait
de déterminer les mécanismes faisant I'objet de modifications et ayant un impact sur I'organisation et
les stratégies utilisées par les patients. L’augmentation de la complexité d’une tdche locomotrice induit
davantage de sollicitations cognitives (Yogev-Seligmann et al., 2008), il apparait donc légitime d’étudier
I'impact d’un paradigme de double tache sur des taches de navigation comme celles composant le
TUG.

Pour conclure cette partie, étudier les associations entre les troubles des fonctions cognitives et
le comportement locomoteur au cours de taches de navigation chez des patients hémiparétiques ayant
subi un AVC s’avere une perspective intéressante. De méme, il apparait Iégitime de mettre en évidence
les mécanismes impliqués dans la diminution de la performance au TUG, de déterminer I'organisation
globale des patients et la ou les stratégies mises en place lors d’'une double tache. Il semble en effet
légitime de se demander si la stratégie de compromis entre la stabilité, la trajectoire et la performance
mise en évidence dans le cadre de notre travail se retrouve dans un contexte différent de taches de
navigation (contrainte environnementale ou cognitive) ou si de nouvelles stratégies émergent.
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ANNEXES

Annexe n°1: placement de marqueurs selon le modeéle Helen Hayes (Reference Manual Orthotrack
6.5 Gait Analysis Sofware)

@ L-Shoulder
R.Shoulder —— >

L.Elbow

L.Asis
, L.Wrist

R.Knee
R.Knee.Medial */*L.Knee.Medial

Y N
\ ,L.Toe
L.Ankle.Medial

R.Ankle.Medial

R.Shank

Légendes: Top Head : sommet de la téte (dans I'alignement des marqueurs en avant et arriere de la téte) ; Front head : avant
de la téte (a la méme hauteur que le marqueur Rear Head) ; Rear Head : arriere de la téte (a la méme hauteur que le marqueur
Front Head) ; R. Shoulder : épaules droite (sommet de I'acromion) ; L. Shoulder : épaule gauche (sommet de I'acromion) ;
R. Elbow : coude droit (épicondyle latéral de I'humérus) ; L. Elbow : coude gauche (épicondyle latéral de I'numérus) ;
R. Wrist : poignet droit (milieu des styloides radiale et ulnaire, face dorsale) ; L. Wrist : poignet gauche (milieu des styloides
radiale et ulnaire, face dorsale) ; Offset pointe de la scapula droite ; R. Asis : épine iliaque antéro-supérieure droite ; L. Asis : épine
iliaque antéro-supérieure gauche ; V. Sacral : partie supérieure du sacrum, jonction avec L5 ; R. Thigh : segment cuisse droit ;
L. Thigh : segment cuisse gauche ; R. Knee : condyle latéral du fémur droit, dans I'axe de flexion/extension de genou ;
L. Knee : condyle latéral du fémur gauche, dans I'axe de flexion/extension de genou ; R. Knee medial : condyle médial du
fémur droit, dans I'axe de flexion/extension de genou ; L. Knee medial : condyle médial du fémur gauche, dans I'axe de
flexion/extension de genou ; R. Shank : segment jambier droit ; L. Shank : segment jambier gauche ; R. Ankle : malléole
latérale de la cheville droite dans I'axe de flexion/extension de cheville ; L. Ankle : malléole latérale de la cheville gauche
dans I'axe de flexion/extension de cheville ; R. Ankle Medial : malléole médiale de la cheville droite dans I'axe de flexion/
extension de cheville ; L. Ankle Medial : malléole médiale de la cheville gauche dans I'axe de flexion/extension de cheville ;
R. Heel : partie postérieure du calcaneum droit dans I'alignement du marqueur orteil ; L. Heel : partie postérieure du calcaneum
gauchedans/’alignement dumarqueur orteil ; R. Toe : entre le 2eme et le 3eme métatarse droit dans’alignement dumarqueur talon;
L. Toe : entre le 2eme et le 3eme métatarse gauche dans I'alignement du marqueur talon.
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Annexe n°2: Données de I'évaluation sensitive (superficielle et profonde) des 29 patients

tiques inclus.
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Annexe n°3: Données de la spasticité et de la motricité volontaire des 29 patients h
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Annexe n°4: Données des évaluations fonctionnelles et les données relatives aux chutes des

29 patients hémiparétiques inclus.
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Characterization of kinematics and trajectory of the mass center of
hemiparectic patients during a navigation task

Keywords : Stroke, navigation, kinematics, stability, trajectory, strategy, assessment.

Abstract

The gait characteristics of patients with hemiparesis are usually assessed during stable,
straight-line gait. Clinical tests are mostly based on timed performance, although biomechanical
gait analysis may be carried out. The analysis of navigational tasks that involve constraints
encountered in daily life is necessary to increase understanding of gait deficits. The Timed Up
and Go test (TUG) includes oriented gait towards a target, and turning tasks, typical of real-life
gait. However, the simple analysis of performance time does not provide sufficient information
regarding actual performance of the tasks.

The main aim of this thesis was to characterize the locomotor displacements of hemiparetic
patients during navigational tasks, such as those involved in the TUG. To this end, we carried
out a biomechanical analysis of gait during the three navigational tasks of the TUG (oriented gait
to the target, turning and oriented gait to the seat). We analysed the kinematics, stability and
locomotor trajectories of patients and healthy subjects. This work is original because it provides
a biomechanical characterization of the organization of gait in patients with hemiparesis during
navigational tasks, using innovative parameters.

The longer performance time in hemiparetic patients, compared with healthy subjects,
was related to a decrease in the majority of spatio-temporal and joint kinematic parameters.
Moreover, the results showed that oriented gait tasks were controlled by the same parameters
in hemiparetic patients and healthy subjects, but in different proportions. In contrast, the turning
task was controlled by different, specific parameters. Organizational differences between
hemiparetic patients and healthy subjects were also highlighted, namely a lack of stability,
slowing during the turn and deviation from the trajectory by the patients. These results suggest
that hemiparetic patients use a strategy which is a compromise between stability, trajectory
and performance for the optimal achievement of navigational tasks, such as these involved in
the TUG. The implications of this work for the clinical management of hemiparetic patients are
explained.



Caractérisation de la cinématique et de la trajectoire du centre de masse
des patients hémiparétiques lors d’une tache de navigation

Mots clés : Hémiparésie, navigation, cinématique, stabilité, trajectoire, stratégie, évaluation

Résumé

Les patients hémiparétiques présentent des troubles de la marche couramment évalués,
lors d’une marche stabilisée en ligne droite, par des tests cliniques chronométriques et
parfois par une analyse quantifiée de la marche explorant les parameétres biomécaniques de
celle-ci. Uanalyse de taches de navigation dans I’environnement, impliquant des contraintes
rencontrées au quotidien, apparait pertinente parallélement a I’analyse de la marche stabilisée
en ligne droite. Le test du Timed Up and Go (TUG) comprend des taches de marche orientée
vers une cible et de demi-tour, ce qui correspond a un grand nombre de déplacements
effectués dans la vie quotidienne. Cependant la performance chronométrique obtenue a I'issue
de ce test ne permet pas la compréhension des mécanismes a I’origine de cette performance.

L’objectif principal de cette thése est de caractériser les déplacements locomoteurs des
patients hémiparétiques au cours de taches de navigation telles que celles impliquées dans le
TUG. Pour cela nous proposons une analyse biomécanique de leurs déplacements au cours
des 3 phases de navigation du TUG (marche orientée vers I'obstacle, demi-tour et marche
orientée vers le sieége). Cette analyse concerne I'étude de la cinématique, de la stabilité et des
trajectoires locomotrices de ces patients et de sujets sains. L' originalité de ce travail repose
sur la caractérisation biomécanique de I'organisation des patients hémiparétiques lors de
taches de navigation, au moyen de paramétres innovants.

La diminution de la performance chronométrique observée chez les patients
hémiparétiques, comparativement aux sujets sains, s’explique tout d’abord par une diminution
de la majorité des paramétres spatio-temporels et de la cinématique articulaire lors des 3
phases de navigation des patients. De plus, les résultats montrent que les phases de marche
orientée sont contrblées par les mémes parameétres pour les patients hémiparétiques et les
sujets sains, mais avec une pondération différente et, que la phase du demi-tour est contrélée
par des paramétres spécifiques différents. Les résultats mettent également en évidence des
différences organisationnelles entre les patients hémiparétiques et les sujets sains, a savoir
un défaut de stabilité, un ralentissement lors du demi-tour et une déviation de la trajectoire
locomotrice pour les patients. Ces résultats suggérent que les patients hémiparétiques
mettent en place une stratégie consistant en un compromis entre la stabilité, la trajectoire et la
performance pour une réalisation optimale des tadches de navigation telles que celles réalisées
lors du TUG. Des répercussions sur la prise en charge clinique des patients hémiparétiques
peuvent étre envisagées a l'issue de ce travail.





